ModelArts

Image Management

 Issue
 01

 Date
 2024-04-30

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

NUAWEI and other Huawei trademarks are the property of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei Cloud and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.

Address: Huawei Cloud Data Center Jiaoxinggong Road Qianzhong Avenue Gui'an New District Gui Zhou 550029 People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Contents

1 Image Management	1
2 Using a Preset Image	4
2.1 Images Preset in Notebook	4
2.1.1 Notebook Base Images	4
2.1.2 Notebook Base Image List	5
2.1.3 PyTorch (x86)-powered Notebook Base Image	6
2.1.4 Tensorflow (x86)-powered Notebook Base Image	12
2.1.5 MindSpore (x86)-powered Notebook Base Image	16
2.1.6 Custom Dedicated Image (x86)-powered Notebook Base Image	24
2.2 Training Base Image	26
2.2.1 Available Training Base Images	27
2.2.2 Training Base Image (PyTorch)	27
2.2.3 Training Base Image (TensorFlow)	
2.2.4 Training Base Image (Horovod)	
2.2.5 Training Base Image (MPI)	
2.2.6 Starting Training with a Preset Image	31
2.2.6.1 PyTorch	31
2.2.6.2 TensorFlow	35
2.2.6.3 Horovod/MPI/MindSpore-GPU	
2.3 Inference Base Images	40
2.3.1 Available Inference Base Images	40
2.3.2 TensorFlow (CPU/GPU)-powered Inference Base Images	
2.3.3 PyTorch (CPU/GPU)-powered Inference Base Images	47
2.3.4 MindSpore (CPU/GPU)-powered Inference Base Images	50
3 Using Custom Images in Notebook Instances	56
3.1 Registering an Image in ModelArts	56
3.2 Creating a Custom Image	57
3.3 Saving a Notebook Instance as a Custom Image	57
3.3.1 Saving a Notebook Environment Image	58
3.3.2 Using a Custom Image to Create a Notebook Instance	59
3.4 Creating and Using a Custom Image in Notebook	59
3.4.1 Application Scenarios and Process	59

3.4.2 Step 1 Creating a Custom Image	60
3.4.3 Step 2 Registering a New Image	62
3.4.4 Step 3 Using a New Image to Create a Development Environment	63
3.5 Creating a Custom Image on an ECS and Using It in Notebook	63
3.5.1 Application Scenarios and Process	63
3.5.2 Step 1 Preparing a Docker Server and Configuring an Environment	64
3.5.3 Step 2 Creating a Custom Image	65
3.5.4 Step 3 Registering a New Image	68
3.5.5 Step 5 Creating and Starting a Development Environment	69
4 Using a Custom Image to Train Models (Model Training)	71
4.1 Overview	71
4.2 Example: Creating a Custom Image for Training	73
4.2.1 Example: Creating a Custom Image for Training (PyTorch + CPU/GPU)	74
4.2.2 Example: Creating a Custom Image for Training (MPI + CPU/GPU)	80
4.2.3 Example: Creating a Custom Image for Training (Horovod-PyTorch and GPUs)	
4.2.4 Example: Creating a Custom Image for Training (MindSpore and GPUs)	102
4.2.5 Example: Creating a Custom Image for Training (TensorFlow and GPUs)	112
4.3 Preparing a Training Image	119
4.3.1 Specifications for Custom Images for Training Jobs	119
4.3.2 Migrating an Image to ModelArts Training	120
4.3.3 Using a Base Image to Create a Training Image	121
4.3.4 Installing MLNX_OFED in a Container Image	122
4.4 Creating an Algorithm Using a Custom Image	123
4.5 Using a Custom Image to Create a CPU- or GPU-based Training Job	127
4.6 Troubleshooting Process	133
5 Using a Custom Image to Create AI applications for Inference Deployment	135
5.1 Custom Image Specifications for Creating AI Applications	135
5.2 Creating a Custom Image and Using It to Create an AI Application	137
6 FAQs	142
6.1 How Can I Log In to SWR and Upload Images to It?	142
6.2 How Do I Configure Environment Variables for an Image?	144
6.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?	144
6.4 How Do I Configure a Conda Source in a Notebook Development Environment?	145
6.5 What Are Supported Software Versions for a Custom Image?	146
7 Modification History	148

Image Management

Overview

During the development and runtime of AI services, complex environment dependencies need to be debugged for containerization. In the best practices of AI development in ModelArts, container images are used to provide fixed runtime environments. In this way, dependencies can be managed and the runtime environments can be easily switched. The container resources provided by ModelArts enable quick and efficient AI development and model experiment iteration.

The preset images provided by ModelArts by default have the following features:

- Out-of-the-box and scenario-specific: Typical dependent environments for AI development are preset in these images to provide optimal software, OS, and network configurations. They have been fully tested on hardware to ensure optimal compatibility and performance.
- Configuration customizable: Preset images are stored in the SWR repository for you to customize and register them as your own images.
- Secure and reliable: Access policies, user permissions control, vulnerability scanning for development software, and OS are configured based on best practices for security hardening to ensure the security of images.

If you have special requirements on the deep learning engine and development library, you can use ModelArts custom images to customize runtime engines.

Based on the container technology, you can customize container images and run them on ModelArts. Custom images support CLI parameters and environment variables in free text format, featuring high flexibility for a wide range of compute engines.

Application Scenarios of Preset Images

ModelArts provides a group of preset images. You can use a preset image to create a notebook instance. After installing and configuring dependencies on the instance, create a custom image. Then, you can directly use the image in ModelArts for training jobs without any adaptation. You can also use preset images to submit training jobs and create AI applications. We recommend the preset image version based on your development requirements and stability of the version. If your development can be carried out using versions preset in ModelArts, for example, MindSpore 1.*X*, use the preset images. They have been fully verified and have many commonly-used installation packages, relieving you from configuring the environment.

Application Scenarios of Custom Images

• Using custom images on notebook instances

If the preset images of notebook instances cannot meet requirements, you can create a custom image by installing and configuring the software and other data required by the environment in a preset image. Then, use the custom image to create new notebook instances.

• Using a custom image to create training jobs

If you have developed a model or training script locally but the AI engine you used is not supported by ModelArts, create a custom image and upload it to SWR. Then, use this image to create a training job on ModelArts and use the resources provided by ModelArts to train models.

• Using a custom image to create AI applications

If you have developed a model using an AI engine that is not supported by ModelArts, to use this model to create AI applications, do as follows: Create a custom image, import the image to ModelArts, and use it to create AI applications. The AI applications created in this way can be centrally managed and deployed as services.

Custom Image Services

When you use a custom image, the following services may be involved:

SWR

Software Repository for Container (SWR) provides easy, secure, and reliable management over container images throughout their lifecycle, facilitating the deployment of containerized applications. You can upload, download, and manage container images through the SWR console, SWR APIs, or community CLI.

Your custom images must be uploaded to SWR. The custom images used by ModelArts for training or creating AI applications are obtained from the SWR service management list.

Figure 1-1 Obtaining images

OBS

Object Storage Service (OBS) is a cloud storage service optimized for storing massive amounts of data. It provides unlimited, secure, and highly reliable storage capabilities at a relatively low cost.

ModelArts exchanges data with OBS. You can store data in OBS.

ECS

An Elastic Cloud Server (ECS) is a basic computing unit that consists of vCPUs, memory, OS, and Elastic Volume Service (EVS) disks. After an ECS is created, you can use it similarly to how you would use your local PC or physical server.

You can create a custom image on premises or on an ECS.

NOTE

When you use a custom image, ModelArts may need to access dependent services, such as SWR and OBS. The custom image can be used only after the access is authorized. It is a good practice to use an agency for authorization. After the agency is configured, the permissions to access dependent services are delegated to ModelArts so that ModelArts can use the dependent services and perform operations on resources on your behalf. For details, see **Configuring Access Authorization (Global Configuration)**.

2 Using a Preset Image

2.1 Images Preset in Notebook

2.1.1 Notebook Base Images

Presetting Images

The images preset in ModelArts DevEnviron include:

- Typical preset packages: AI engines based on standard Conda, data analysis software packages such as Pandas and Numpy, and tool software such as CUDA and CUDNN are included to meet your needs.
- Preset Conda environments: A Conda environment and basic Conda Python (excluding any AI engine) are created for each preset image. The following figure shows the Conda environment for a preset MindSpore image.

Select a Conda environment based on whether MindSpore is used for debugging.

- Notebook: a web application that enables you to code on the GUI and combine the code, mathematical equations, and visualized content into a document.
- JupyterLab plug-ins: enable flavor changing and instance stopping to improve user experience. After a notebook instance is stopped, its CPUs and memory are no longer billed.

- Remote SSH: allows you to remotely start and debug a notebook instance from a local PC.
- Images preset in ModelArts DevEnviron: After these preset images support function development, the custom images created based on these preset images can be directly used for ModelArts training jobs.

A ModelArts preset image is started as user **ma-user**. The default working directory of an accessed notebook instance is **/home/ma-user/work**.

Create an instance and mount the persistent storage to **/home/ma-user/work**. The data stored only in the **work** directory is retained after the instance is stopped and restarted. When you use a development environment, store the data for persistence in **/home/ma-user/work**.

🛯 Terminal 1		×	
() (bomo (mo)	[ma-user	work	c]\$pwd
(I,	[ma-user	work	:]\$[

Creating a Notebook Instance Using a Preset Image

Select a preset image when creating a notebook instance. You can access and use the instance right after it is created.

- Log in to the ModelArts management console. In the navigation pane on the left, choose **DevEnviron** > **Notebook** to access the new-version **Notebook** page.
- 2. Click **Create**. On the **Create Notebook** page, select a public image, configure other parameters, and submit the creation request. For details about the parameters, see **Creating a Notebook Instance**.
- 3. After the status of the notebook instance changes to **Running**, access the notebook to use the created image.

2.1.2 Notebook Base Image List

ModelArts DevEnviron provides Docker container images, which can run as preset containers. Certain preset images are built on common AI engine frameworks such as PyTorch, TensorFlow, and MindSpore. These images are named using the AI engines. Additionally, many common packages are preset in these images, relieving you from the package installation.

Al Engine	Image
PyTorch	pytorch1.8-cuda10.2-cudnn7-ubuntu18.04
	pytorch1.10-cuda10.2-cudnn7-ubuntu18.04
	pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

Table 2-1	Preset x86	images
-----------	------------	--------

AI Engine	Image
Tensorflow	tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04
	tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04
MindSpore	mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04
	mindspore1.7.0-py3.7-ubuntu18.04
	mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04
	mindspore1.2.0-openmpi2.1.1-ubuntu18.04
No Al engine (base	conda3-cuda10.2-cudnn7-ubuntu18.04
images dedicated for image customization)	conda3-ubuntu18.04

2.1.3 PyTorch (x86)-powered Notebook Base Image

ModelArts provides the following notebook base images powered by PyTorch (x86): pytorch1.8-cuda10.2-cudnn7-ubuntu18.04, pytorch1.10-cuda10.2-cudnn7-ubuntu18.04, and pytorch1.4-cuda10.1-cudnn7-ubuntu18.04.

Image pytorch1.8-cuda10.2-cudnn7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
PyTor ch 1.8	Yes (cuda 10.2)	swr. {region_id}.myhuaweicloud.c om/atelier/ pytorch_1_8:pytorch_1.8.0- cuda_10.2-py_3.7- ubuntu_18.04- x86_64-20220926104358-04 1ba2e	PyPI package	Ubuntu package

Table 2-2 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA	URL	Dependency	
			torch 1.8.0 torchvision 0.9.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.19.5 opencv-python 4.1.2.30 pandas 1.1.5 pillow 9.2.0 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.2 tensorboard 2.1.1	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libcudnn7- dev libjpeg- dev:amd64 libjpeg8- dev

Image pytorch1.10-cuda10.2-cudnn7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
PyTor ch 1.10	Yes (cuda 10.2)	swr. {region_id}.myhuaweicloud.c om/atelier/ pytorch_1_10:pytorch_1.10.2 -cuda_10.2-py_3.7- ubuntu_18.04- x86_64-20221008154718-2b 3e39c	PyPI package	Ubuntu package

 Table 2-3 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			torch 1.10.2 torchvision 0.11.3 ipykernel 5.3.4 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.19.5 opencv-python 4.1.2.30 pandas 1.1.5 pillow 9.2.0 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.2	automake build- essential ca- certificates cmake cpp curl ffmpeg gfortran gfortran git gfortran git git-lfs grep libcudnn7- dev libcudnn7- libcudnn7- dev bjpeg- dev:amd64 libjpeg8- dev:a

Image pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
PyTor ch 1.4	Yes (cuda 10.1)	swr. {region_id}.myhuaweicloud.c om/atelier/ pytorch_1_4:pytorch_1.4- cuda_10.1-py37- ubuntu_18.04- x86_64-20220926104017-04 1ba2e	PyPI package	Ubuntu package

 Table 2-4 pytorch1.4-cuda10.1-cudnn7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			torch 1.4.0 torchvision 0.5.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.19.5 opencv-python 4.1.2.30 pandas 1.1.5 pillow 9.2.0 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.2 tensorboard 2.1.1	automake build- essential ca- certificates cmake cpp curl fmpeg g++ gcc gfortran git git-lfs grep libcudnn7- dev libjpeg- dev:amd64 libjpeg8- dev:

2.1.4 Tensorflow (x86)-powered Notebook Base Image

ModelArts provides the following notebook base images powered by Tensorflow (x86): tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04 and tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

Image tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
Tenso rFlow 2.1	Yes (cuda 10.1)	swr. {region_id}.myhuaweicloud.c om/atelier/ tensorflow_2_1:tensorflow_2 .1.0-cuda_10.1-py_3.7- ubuntu_18.04- x86_64-20220926144607-04 1ba2e	PyPI package	Ubuntu package

 Table 2-5 tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			tensorflow 2.1.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.19.5 opencv-python 4.1.2.30 pandas 1.1.5 pillow 9.2.0 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.2 tensorboard 2.1.1	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libcudnn7- dev libjpeg- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 server nginx python3 rpm screen tar tmux unzip vim wget zip

Image tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
Tenso rFlow 1.13- gpu	Yes (cuda 10.0)	swr. {region_id}.myhuaweicloud.c om/atelier/ tensorflow_1_13:tensorflow_ 1.13-cuda_10.0-py_3.7- ubuntu_18.04- x86_64-20220926104358-04 1ba2e	PyPI package	Ubuntu package

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			tensorflow-gpu 1.13.1 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.0.1.rc0.ffd1c0c 8 numpy 1.17.0 opencv-python 4.1.2.30 pandas 1.1.5 pillow 6.2.0 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.2.2 scikit-learn 0.22.1 tornado 6.2	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libcudnn7- dev libjpeg- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 jpenssh- client openssh- server nginx python3 rpm screen tar tmux unzip vim wget zip

2.1.5 MindSpore (x86)-powered Notebook Base Image

ModelArts provides the following notebook base images powered by MindSpore (x86): mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04, mindspore1.7.0-py3.7-ubuntu18.04, mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04, and mindspore1.2.0-openmpi2.1.1-ubuntu18.04.

Image mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
Mind Spore -gpu 1.7.0	Yes (cuda 10.1)	swr. {region_id}.myhuaweicloud.c om/atelier/ mindspore_1_7_0:mindspore _1.7.0-cuda_10.1-py_3.7- ubuntu_18.04- x86_64-20220926104017-04 1ba2e	PyPI package	Ubuntu package

 Table 2-7 mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			mindspore-gpu 1.7.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.17.0 pandas 1.1.5 pillow 9.1.1 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.1 mindinsight 1.7.0 mindvision 0.1.0	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libcudnn7- dev libcudnn7- libcudnn7- dev libjpeg- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 cev libjpeg8- dev:amd64 libjpeg8- dev libjpeg8- dev client openssh- server nginx python3 rpm screen tar tmux unzip vim wget zip

Image mindspore1.7.0-py3.7-ubuntu18.04

Table 2-8 mindspore1.7.0-py3.7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
Mind Spore 1.7.0	None	swr. {region_id}.myhuaweicloud.c om/atelier/ mindspore_1_7_0:mindspore _1.7.0-cpu-py_3.7- ubuntu_18.04- x86_64-20220926104017-04 1ba2e	PyPI package	Ubuntu package

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			mindspore 1.7.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.6 ma-cau-adapter 1.1.3 ma-cli 1.2.2 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.17.0 pandas 1.1.5 pillow 9.1.1 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.1 mindinsight 1.7.0 mindvision 0.1.0	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libjpeg- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 server nginx python3 rpm screen tar tmux unzip vim wget zip

Image mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04

 Table 2-9 mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04 description

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
Mind Spore -gpu 1.2.0	Yes (cuda 10.1)	swr. {region_id}.myhuaweicloud.c om/atelier/ mindspore_1_2_0:mindspore _1.2.0-py_3.7-cuda_10.1- ubuntu_18.04- x86_64-20220926104106-04 1ba2e	PyPI package	Ubuntu package

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			mindspore-gpu 1.2.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.3 ma-cau-adapter 1.1.3 ma-cli 1.1.5 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.19.5 pandas 1.1.5 pillow 6.2.0 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.2 mindinsight 1.2.0	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libcudnn7- dev libjpeg- dev:amd64 libjpeg8- dev

Image mindspore1.2.0-openmpi2.1.1-ubuntu18.04

Table 2-10	mindspore	I.2.0-openmpi2.1	.1-ubuntu18.04	description
------------	-----------	------------------	----------------	-------------

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
Mind Spore 1.2.0	None	swr. {region_id}.myhuaweicloud.c om/atelier/ mindspore_1_2_0:mindspore _1.2.0-py_3.7-ubuntu_18.04- x86_64-20220926104106-04 1ba2e	PyPI package	Ubuntu package

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
			mindspore 1.2.0 ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.3 ma-cau-adapter 1.1.3 ma-cli 1.1.5 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.19.5 pandas 6.2.0 pillow 9.1.1 pip 22.1.2 psutil 5.8.0 PyYAML 5.1 scipy 1.5.2 scikit-learn 0.22.1 tornado 6.2 mindinsight 1.2.0	automake build- essential ca- certificates cmake cpp curl ffmpeg g++ gcc gfortran git git-lfs grep libjpeg- dev:amd64 libjpeg8- dev:amd64 libjpeg8- dev:amd64 openssh- client openssh- server nginx python3 rpm screen tar tmux unzip vim wget zip

2.1.6 Custom Dedicated Image (x86)-powered Notebook Base Image

ModelArts provides the following notebook base images powered by custom images (x86): **conda3-cuda10.2-cudnn7-ubuntu18.04** and **conda3-ubuntu18.04**. These images do not have AI engines or related software packages. The image size is only 2 GB to 5 GB. You can use these images as base images and install your desired engine and dependency packages, improving scalability. In addition, these images are preset with some configurations required for starting the development environment. You can use these images after installing required software packages, without the need for any adaptations.

Such images are the most basic ones and have no component installed. They are small enough to facilitate image customization. If you need to use the OBS SDK, use ModelArts SDK instead to copy files. For details, see **Transferring Files**.

Image conda3-cuda10.2-cudnn7-ubuntu18.04

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
None	Yes (cuda 10.2)	swr. {region_id}.myhuaweicloud.c om/atelier/ user_defined_base:cuda_10.2 -ubuntu_18.04- x86_64-20221008154718-2b 3e39c	PyPI package	Ubuntu package

 Table 2-11 conda3-cuda10.2-cudnn7-ubuntu18.04 description

Al Wł Engi r to ne GP (Cl Ve	hethe o Use Us UDA rsion)	URL	Dependency	
			ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.3 ma-cau-adapter 1.1.3 ma-cli 1.1.5 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.21.6 pandas 1.3.5 pillow 9.2.0 pip 20.3.3 psutil 5.9.1 PyYAML 6.0 scipy 1.7.3 tornado 6.2	automake build- essential ca- certificates cmake cpp curl g++ gcc gfortran grep libcudnn7- libcudnn7- libcudnn7- libcudnn7- dev nginx python3 rpm tar unzip vim vim wget zip

Image conda3-ubuntu18.04

Table 2-12 conda3-ubuntu18.04 descrip	tion
---------------------------------------	------

Al Engi ne	Whethe r to Use GPUs (CUDA Version)	URL	Dependency	
None	(CUDA Version) No	swr. {region_id}.myhuaweicloud.c om/atelier/ user_defined_base:ubuntu_1 8.04- x86_64-20221008154718-2b 3e39c For example: CN North-Beijing4 swr.cn- north-4.myhuaweicloud.com /atelier/ user_defined_base:ubuntu_1 8.04- x86_64-20221008154718-2b 3e39c CN East-Shanghai1 swr.cn- east-3.myhuaweicloud.com/ atelier/ user_defined_base:ubuntu_1 8.04- x86_64-20221008154718-2b	PyPI package ipykernel 6.7.0 ipython 7.34.0 jupyter-client 7.3.4 ma-cau 1.1.3 ma-cau-adapter 1.1.3 ma-cli 1.1.5 matplotlib 3.5.1 modelarts 1.4.11 moxing- framework 2.1.0.5d9c87c8 numpy 1.21.6 pandas 1.3.5 pillow 9.2.0 pin 20 3 3	Ubuntu package automake build- essential ca- certificates cmake cpp curl g++ gcc gfortran grep nginx python3 rpm tar unzip
		3e39c CN South-Guangzhou swr.cn- south-1.myhuaweicloud.com /atelier/ user_defined_base:ubuntu_1 8.04- x86_64-20221008154718-2b 3e39c	psutil 5.9.1 PyYAML 6.0 scipy 1.7.3 tornado 6.2	vim wget zip

2.2 Training Base Image

2.2.1 Available Training Base Images

ModelArts provides deep learning-powered base images such as TensorFlow, PyTorch, and MindSpore images. In these images, the software mandatory for running training jobs has been installed. If the software in the base images cannot meet your service requirements, create new images based on the base images and use the new images to create training jobs.

Available Training Base Images

The following table lists the preset training base images of ModelArts.

Engine	Version
PyTorch	pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
TensorFlow	tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
Horovod	horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7- ubuntu_18.04-x86_64
	horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7- ubuntu_18.04-x86_64
MPI	mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

 Table 2-13 ModelArts training base images

Supported AI engines vary depending on regions.

2.2.2 Training Base Image (PyTorch)

This section describes preset PyTorch images.

Engine Version: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

- Image address: swr.{region}.myhuaweicloud.com/aip/pytorch_1_8:trainpytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64roma-20220309171256-40adcc1
- Image creation time: 20220309171256 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- cuda: 10.2.89
- cudnn: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ PyTorch-1.8/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ PyTorch-1.8/lib/python3.7/site-packages
- The versions of some third-party packages: Cython 0.27.3 dask 2022.2.0

easydict 1.9 enum34 1.1.10 torch 1.8.0 Flask 1.1.1 grpcio 1.44.0 gunicorn 20.1.0 idna 3.3 torchtext 0.5.0 imageio 2.16.0 imgaug 0.4.0 lxml 4.8.0 matplotlib 3.5.1 torchvision 0.9.0 mmcv 1.2.7 numba 0.47.0 numpy 1.21.5 opencv-python 4.1.2.30 toml 0.10.2 pandas 1.1.5 Pillow 9.0.1 pip 21.2.2 protobuf 3.19.4 scikit-learn 0.22.1 psutil 5.8.0 PyYAML 6.0 requests 2.27.1 scikit-image 0.19.2

• Earlier versions: none

2.2.3 Training Base Image (TensorFlow)

This section describes preset TensorFlow images.

Engine Version: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

- Image address: swr.{region}.myhuaweicloud.com/aip/tensorflow_2_1:traintensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04x86_64-20210912152543-1e0838d
- Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- cuda: 10.1.243
- cudnn: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ TensorFlow-2.1/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ TensorFlow-2.1/lib/python3.7/site-packages
- The versions of some third-party packages: Cython 0.29.21 dask 2021.9.0 easydict 1.9 enum34 1.1.10 tensorflow 2.1.0 Flask 1.1.1 grpcio 1.40.0 gunicorn 20.1.0 idna 3.2 tensorflow-estimator 2.1.0 imageio 2.9.0 imgaug 0.4.0 kml 4.6.3

```
matplotlib 3.4.3
termcolor 1.1.0
scikit-image 0.18.3
numba 0.47.0
numpy 1.17.0
opencv-python 4.1.2.30
tifffile 2021.8.30
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
protobuf 3.17.3
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
requests 2.26.0
```

• Earlier versions: none

2.2.4 Training Base Image (Horovod)

This section describes preset Horovod images.

Engine Version 1: horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

- Image address: swr.{region}.myhuaweicloud.com/aip/ horovod_tensorflow:train-horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7ubuntu_18.04-x86_64-20210912152543-1e0838d
- Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- cuda: 10.1.243
- cudnn: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ horovod_0.20.0-tensorflow_2.1.0/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ horovod_0.20.0-tensorflow_2.1.0/lib/python3.7/site-packages
- The versions of some third-party packages:

Cython 0.29.21 dask 2021.9.0 easydict 1.9 enum34 1.1.10 horovod 0.20.0 Flask 1.1.1 grpcio 1.40.0 gunicorn 20.1.0 idna 3.2 tensorboard 2.1.1 imageio 2.9.0 imgaug 0.4.0 lxml 4.6.3 matplotlib 3.4.3 tensorflow-gpu 2.1.0 tensorboardX 2.0 numba 0.47.0 numpy 1.17.0 opencv-python 4.1.2.30 toml 0.10.2 pandas 1.1.5 Pillow 6.2.0 pip 21.0.1

protobuf 3.17.3 scikit-learn 0.22.1 psutil 5.8.0 PyYAML 5.1 requests 2.26.0 scikit-image 0.18.3

• Earlier versions: none

Engine Version 2: horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

- Image address: swr.{region}.myhuaweicloud.com/aip/horovod_pytorch:trainhorovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04x86_64-20210912152543-1e0838d
- Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- cuda: 11.1.1
- cudnn: 8.0.5.39
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ horovod-0.22.1-pytorch-1.8.0/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ horovod-0.22.1-pytorch-1.8.0/lib/python3.7/site-packages
- The versions of some third-party packages:

Cython 0.27.3 dask 2021.9.0 easydict 1.9 enum34 1.1.10 horovod 0.22.1 Flask 1.1.1 grpcio 1.40.0 gunicorn 20.1.0 idna 3.2 mmcv 1.2.7 imageio 2.9.0 imgaug 0.4.0 lxml 4.6.3 matplotlib 3.4.3 torch 1.8.0 tensorboardX 2.0 numba 0.47.0 numpy 1.17.0 opencv-python 4.1.2.30 torchtext 0.5.0 pandas 1.1.5 Pillow 6.2.0 pip 21.0.1 protobuf 3.17.3 scikit-learn 0.22.1 psutil 5.8.0 PyYAML 5.1 requests 2.26.0 scikit-image 0.18.3 torchvision 0.9.0

• Earlier versions: none

2.2.5 Training Base Image (MPI)

This section describes preset mindspore_1.3.0 images.

Engine Version: mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

- Image address: swr.{region}.myhuaweicloud.com/aip/mindspore_1_3_0:trainmindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64roma-20211104202338-f258e59
- Image creation time: 20211104202338(yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- cuda: 10.1.243
- cudnn: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ MindSpore-1.3.0-gpu/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ MindSpore-1.3.0-gpu/lib/python3.7/site-packages
- The versions of some third-party packages: requests 2.26.0 dask 2021.9.0 easydict 1.9 enum34 1.1.10 mindspore-gpu 1.3.0 Flask 1.1.1 grpcio 1.41.1 gunicorn 20.1.0 idna 3.3 PyYAML 5.1 imageio 2.10.1 imgaug 0.4.0 lxml 4.6.4 matplotlib 3.4.2 psutil 5.8.0 scikit-image 0.18.3 numba 0.47.0 numpy 1.17.0 opency-python 4.5.2.54 tifffile 2021.11.2 pandas 1.1.5 Pillow 8.4.0 pip 21.0.1 protobuf 3.17.3 scikit-learn 0.22.1
 - Earlier versions: none

2.2.6 Starting Training with a Preset Image

2.2.6.1 PyTorch

ModelArts provides multiple AI frameworks for different engines. When you use these engines for model training, the boot commands during training need to be adapted accordingly. This section introduces how to make adaptions to the PyTorch engine.

PyTorch Startup Principle

Specifications and number of nodes

In this case, **GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB** is used as an example to describe how to allocate ModelArts resources for single-node and distributed jobs.

For a single-node job (running on only one node), ModelArts starts a training container that exclusively uses the resources on the node.

For a distributed job (running on more than one node), there are as many workers as the nodes that are selected during job creation. Each worker is allocated with the compute resources of the selected specification. For example, there are 2 compute nodes, two workers will be started, and each worker owns the compute resources of GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB.

Network communication

- For a single-node job, no network communication is required.
- For a distributed job, network communications are required in nodes and between nodes.

In nodes

NVLink and shared memory are used for communication.

Between nodes

If there is more than one compute node, PyTorch distributed training will be started. The following figure shows the network communications between workers in PyTorch distributed training. Workers can communicate with each other using the container network and a 100-Gbit/s InfiniBand or RoCE NIC. RoCE NICs are described specifically for certain specifications. The containers can communicate through DNS domain names, which is suitable for small-scale point-to-point communication that requires average network performance. The InfiniBand and RoCE NICs are suitable for distributed training jobs using collective communication that require high-performance network.

Boot Commands

The training service uses the default python interpreter in the job image to start the training script. To obtain the python interpreter, run the **which python** command. The working directory during startup is **/home/ma-user/user-job-dir/** *<The code directory name>*, which is the directory returned by running **pwd** or **os.getcwd()** in python.
Boot command for single-card single-node python <Relative path of the startup file> <Iob parameters>

- Relative path of the startup file. path of the startup file relative to / home/ma-user/user-job-dir/<The code directory name>
- Job parameters. parameters configured for a training job

Figure 2-2 Creating a training job

* Algorithm Type	Custom algorithm		
* Boot Mode	Preset image Custom image		
	PyTorch V pytorch_1.8.2-cuda_10.2-py_3 V		
* Code Directory ⑦	/modelarts-train-test/gpu-train/		
* Boot File ⑦	/modelarts-train-test/gpu-train/train.py		
Local Code Directory	/home/ ma-user/modelarts/user-job-dir		
Work Directory	/home/ma-user/modelarts/user-job-dir X Select		
Input ③	(b) Add		
Output 🕜	⊕ Add		
Hyperparameter	epochs = 5		
	① Add		

Configure the parameters by referring to the above figure. Then, run the following command on the console background:

python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --epochs 5

- Boot command for multi-cards single-node python <Relative path of the startup file> --init_method "tcp://\${MA_VJ_NAME}-\$ {MA_TASK_NAME}-0.\${MA_VJ_NAME}:\${port}" <Job parameters>
 - Relative path of the startup file. path of the startup file relative to / home/ma-user/user-job-dir/<The code directory name>
 - *\${MA_VJ_NAME}-\${MA_TASK_NAME}-0.\${MA_VJ_NAME}*: domain name of the container where worker-0 is located. For details, see **Default** environment variables.
 - *port*: default communication port of the container where worker-0 is located
 - Job parameters: parameters configured for a training job

rigure 2-5 creating a training job			
* Algorithm Type	Custom algorithm		
* Boot Mode	Preset image Custom image		
	PyTorch V) pytorch_1.8.2-cuda_10.2-py_3 V		
* Code Directory ⑦	/modelarts-train-test/gpu-train/		
* Boot File 📀	/modelarts-train-test/gpu-train/train.py		
Local Code Directory	/home/ ma-user/modelarts/user-job-dir		
Work Directory	/home/ma-user/modelarts/user-job-dir X Select		
Input 💿	① Add		
Output ⑦	⊕ Add		
Hyperparameter	epochs = 5		
	⊕ Add		

Figure 2-3 Creating a training job

Configure the parameters by referring to the above figure. Then, run the following command on the console background:

python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --init_method "tcp://\$ {MA_VJ_NAME}-\${MA_TASK_NAME}-0.\${MA_VJ_NAME}:\${port}" --epochs 5

Boot command for multi-cards multi-nodes

python <Relative path of the startup file> --init_method "tcp://\${MA_VJ_NAME}-\$
{MA_TASK_NAME}-0.\${MA_VJ_NAME}:\${port}" --rank <rank_id> --world_size <node_num> <Job
parameters>

- Relative path of the startup file. path of the startup file relative to / home/ma-user/user-job-dir/<The code directory name>
- \${MA_VJ_NAME}-\${MA_TASK_NAME}-0.\${MA_VJ_NAME}: domain name of the container where worker-0 is located. For details, see **Default** environment variables.
- *port*: default communication port of the container where worker-0 is located
- rank: worker serial number
- node_num: number of workers
- Job parameters. parameters configured for a training job

Figure 2-4 Creating a training job			
* Algorithm Type	Custom algorithm		
* Boot Mode	Preset image Custom image		
	PyTorch V pytorch_1.8.2-cuda_10.2-py_3 V		
* Code Directory ⑦	/modelarts-train-test/gpu-train/		
* Boot File ⑦	/modelarts-train-test/gpu-train/train.py Select		
Local Code Directory	/home/ ma-user/modelarts/user-job-dir		
Work Directory	/home/ma-user/modelarts/user-job-dir X Select		
Input ③	⊕ Add		
Output ③	⊕ Add		
Hyperparameter	epochs = 5		
	⊕ Add		

Configure the parameters by referring to the above figure. Then, run the following command on the console background:

python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --init_method "tcp://\$ {MA_VJ_NAME}-\${MA_TASK_NAME}-0.\${MA_VJ_NAME}:\${port}" --rank "\${rank_id}" --world_size "\$ {node_num}" --epochs 5

2.2.6.2 TensorFlow

ModelArts provides multiple AI frameworks for different engines. When you use these engines for model training, the boot commands during training need to be adapted accordingly. This section introduces how to make adaptions to the TensorFlow engine.

TensorFlow Startup Principle

Specifications and number of nodes

In this case, **GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB** is used as an example to describe how to allocate ModelArts resources for single-node and distributed jobs.

For a single-node job (running on only one node), ModelArts starts a training container that exclusively uses the resources on the node.

For a distributed job (running on more than one node), ModelArts starts a parameter server (PS) and a worker on the same node. The PS owns the compute resources of **CPU: 36 cores | Memory: 256 GB**, and the worker owns **GPU: 8 xNVIDIA-V100 | CPU: 36 cores | Memory: 256 GB**.

Only CPU and memory resources are allocated to a PS, while a worker can also own acceleration cards (except for pure CPU specifications). In this example, each worker owns eight NVIDIA V100 acceleration cards. If a PS and a worker are started on the same node, the disk resources are shared by both parties.

Network communication

- For a single-node job, no network communication is required.
- For a distributed job, network communications are required in nodes and between nodes.

In nodes

A PS and a worker can communicate in nodes through a container network or host network.

- A container network is used when you run a training job on nodes using shared resources.
- When you run a training job on nodes using a dedicated pool, the host network is used if the node is configured with RoCE NICs, and the container network is used if the node is configured with InfiniBand NICs.

Between nodes

For a distributed job, a PS and a worker can communicate between nodes. ModelArts provides you with InfiniBand and RoCE NICs with a bandwidth of up to 100 Gbit/s.

Boot Commands

By default, the training service uses the python interpreter in the job image to start up the training script. To obtain the python interpreter, run the **which python** command. The working directory during startup is **/home/ma-user/user-job-dir/***<The code directory name>*, which is the directory returned by running **pwd** or **os.getcwd()** in python.

- Boot command for single-card single-node
 - python <Relative path of the startup file> <Job parameters>
 - Relative path of the startup file. path of the startup file relative to / home/ma-user/user-job-dir/<The code directory name>
 - Job parameters: running parameters configured for a training job

Figure 2-5 Creating a training job

* Algorithm Type	Custom algorithm		
* Boot Mode	Preset image Custom image		
	PyTorch v pytorch_1.8.2-cuda_10.2-py_3 v		
* Code Directory ⑦	/modelarts-train-test/gpu-train/		
* Boot File	/modelarts-train-test/gpu-train/train.py Select		
Local Code Directory	/home/ ma-user/modelarts/user-job-dir		
Work Directory	/home/ma-user/modelarts/user-job-dir X Select		
Input 💿	① Add		
Output 💿	+ Add		
Hyperparameter	epochs = 5		
	+ Add		

Configure the parameters by referring to the above figure. Then, run the following command on the console background:

python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --epochs 5

Boot command for distributed jobs

python --task_index \${VC_TASK_INDEX} --PS_hosts \${TF_PS_HOSTS} --worker_hosts \$
{TF_WORKER_HOSTS} --job_name \${MA_TASK_NAME} <Relative path of the startup file> <lob
parameters>

- *VC_TASK_INDEX*: task serial number, for example, **0/1/2**.
- *TF_PS_HOSTS*: address array of PS nodes, for example, [*xx*-PS-0.*xx*:*TCP_PORT*,*xx*-PS-1.*xx*:*TCP_PORT*]. The value of TCP_PORT is a random port ranging from 5,000 to 10,000.
- *TF_WORKER_HOSTS*: address array of worker nodes, for example, [*xx*-worker-0.*xx*:*TCP_PORT*,*xx*-worker-1.*xx*:*TCP_PORT*]. The value of TCP_PORT is a random port ranging from 5,000 to 10,000.
- MA_TASK_NAME: task name, which can be PS or worker.
- Relative path of the startup file: path of the startup file relative to / home/ma-user/user-job-dir/<The code directory name>
- Job parameters: running parameters configured for a training job

Figure 2-6 Creating a training job

* Algorithm Type	Custom algorithm		
* Boot Mode	Preset image Custom image		
	PyTorch v pytorch_1.8.2-cuda_10.2-py_3 v		
* Code Directory ⑦	/modelarts-train-test/gpu-train/ Select		
* Boot File (?)	/modelarts-train-test/gpu-train/train.py		
Local Code Directory	/home/ ma-user/modelarts/user-job-dir		
Work Directory	/home/ma-user/modelarts/user-job-dir X Select		
Input 💿	⊕ Add		
Output ⑦	⊕ Add		
Hyperparameter	epochs = 5		
	⊕ ∆dd		

Configure the parameters by referring to the above figure. Then, run the following command on the console background:

python --task_index "\$VC_TASK_INDEX" --PS_hosts "\$TF_PS_HOSTS" --worker_hosts "\$TF_WORKER_HOSTS" --job_name "\$MA_TASK_NAME" /home/ma-user/modelarts/user-job-dir/qpu-train/train.py --epochs 5

2.2.6.3 Horovod/MPI/MindSpore-GPU

ModelArts provides multiple AI frameworks for different engines. When you use these engines for model training, the algorithm codes during training need to be adapted accordingly. This section introduces how to make adaptions to the Horovod/MPI/MindSpore-GPU engine.

Horovod/MPI/MindSpore-GPU Startup Principle

Specifications and number of nodes

In this case, **GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB** is used as an example to describe how to allocate ModelArts resources for single-node and distributed jobs.

For a single-node job (running on only one node), ModelArts starts a training container that exclusively uses the resources on the node.

For a distributed job (running on more than one node), there are as many workers as the nodes that are selected during job creation. Each worker is allocated with the compute resources of the selected specification. For example, if there are 2 compute nodes, two workers will be started, and each worker owns the compute resources of GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB.

Network communication

- For a single-node job, no network communication is required.
- For a distributed job, network communications are required in nodes and between nodes.

In nodes

NVLink and shared memory are used for communication.

Between nodes

If there is more than one compute node, PyTorch distributed training will be started. The following figure shows the network communications between workers in PyTorch distributed training. Workers can communicate with each other using the container network and a 100-Gbit/s InfiniBand or RoCE NIC. RoCE NICs are described specifically for certain specifications. The containers can communicate through DNS domain names, which is suitable for small-scale point-to-point communication that requires average network performance. The InfiniBand and RoCE NICs are suitable for distributed training jobs using collective communication that require high-performance network.

Boot Commands

By default, the training service uses the python interpreter in the job image to start up the training script. To obtain the python interpreter, run the **which python** command. The working directory during startup is **/home/ma-user/user**

job-dir/*<The code directory name>*, which is the directory returned by running **pwd** or **os.getcwd()** in python.

Boot commands

mpirun \
-np \${OPENMP!_NP} \
-hostfile \${OPENMP!_HOST_FILE_PATH} \
-mca plm_rsh_args "-p \${SSHD_PORT}" \
-tune \${TUNE_ENV_FILE} \
\${OPENMP!_BIND_ARGS} \
\${OPENMP!_X_ARGS} \
\${OPENMP!_MCA_ARGS} \
\${OPENMP!_EXTRA_ARGS} \
python <Relative path of the startup file> <Job parameters>

- OPENMPI_NP. number of processes started by mpirun. The default value is the number of GPUs multiplied by the number of nodes. Do not modify this value.
- *OPENMPI_HOST_FILE_PATH*: value of **hostfile**. Do not modify this value.
- SSHD_PORT: Port for SSH login. Do not modify this value.
- *TUNE_ENV_FILE*: environment variables of worker-0. Broadcast the following environment variables to other worker nodes of the current training job.
 - env with the MA_ prefix
 - **env** with the **SHARED**_ prefix
 - **env** with the **S3**_ prefix
 - env of PATH
 - **env** with the **VC_WORKER_** prefix
 - **env** with the **SCC** prefix
 - env with the CRED prefix env|grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED'|grep -v '=\$'> \$ {TUNE_ENV_FILE}
- OPENMPI_BIND_ARGS: process pinning with the mpirun cpu command. The default settings are as follows: OPENMPI_BIND_ARGS="-bind-to none -map-by slot"
- OPENMPI_X_ARGS: -x parameters of the mpirun command. The default settings are as follows: OPENMPI_X_ARGS="-x LD_LIBRARY_PATH -x HOROVOD_MPI_THREADS_DISABLE=1 -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=ib0,bond0,eth0 -x NCCL_SOCKET_FAMILY=AF_INET -x NCCL_IB_DISABLE=0"
- OPENMPI_X_ARGS: -mca parameters of the mpirun command. The default settings are as follows:
- OPENMPI_MCA_ARGS="-mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true" OPENMPI_EXTRA_ARGS: parameters passed to mpirun. The default value is
- empty.
 - Relative path of the startup file: path of the startup file relative to / home/ma-user/user-job-dir/<The code directory name>
 - Job parameters: running parameters configured for a training job

Figure 2-8 Creating a training job

* Algorithm Type	Custom algorithm		
* Boot Mode	Preset image Custom image		
	Horovod V horovod_0.20.0-tensorflow_2.1 V		
* Code Directory ⑦	/modelarts-train-test/gpu-train/		
* Boot File 🕜	/modelarts-train-test/gpu-train/train.py Select		
Local Code Directory	/home/ ma-user/modelarts/user-job-dir		
Work Directory	/home/ma-user/modelarts/user-job-dir X Select		
Input ⑦	data_uri /modelarts-train-test/gpu-train/data_urt_0/ Dataset Data path		
	Obtained from Hyperparameters Environment variables		
	-data_url=/home/ma-user/modelarts/inputs/data_url_0		
	(b) Add		

Configure the parameters by referring to the above figure. Then, run the following command on the console background:

NOTE

If you are using a Horovod, MPI, or MindSpore-GPU engine for model training, the boot commands for single-node jobs and distributed jobs are the same.

2.3 Inference Base Images

2.3.1 Available Inference Base Images

ModelArts inference provides a series of base images. You can create custom images based on these base images to deploy inference services.

x86 (CPU/GPU)

AI Engine Version	Runtime Environme nt	URI
2.1.0	CPU GPU (CUDA 10.1)	swr.{region_id}.myhuaweicloud.com/atelier/ tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7- ubuntu_18.04-x86_64-20221121111529-d65d817
1.15.5	CPU GPU (CUDA 11.4)	swr.{region_id}.myhuaweicloud.com/aip/ tensorflow_1_15:tensorflow_1.15.5-cuda_11.4-py_3.8- ubuntu_20.04-x86_64-20220524162601-50d6a18
2.6.0	CPU GPU (CUDA 11.2)	swr.{region_id}.myhuaweicloud.com/aip/ tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7- ubuntu_18.04-x86_64-20220524162601-50d6a18

Table 2-15 PyTorch

AI Engine Version	Runtime Environme nt	URI
1.8.0	CPU GPU (CUDA 10.2)	swr.{region_id}.myhuaweicloud.com/atelier/ pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7- ubuntu_18.04-x86_64-20221118143845-d65d817
1.8.2	CPU GPU (CUDA 11.1)	swr.{region_id}.myhuaweicloud.com/aip/ pytorch_1_8:pytorch_1.8.2-cuda_11.1-py_3.7- ubuntu_18.04-x86_64-20220524162601-50d6a18

Table 2-16 MindSpore

Al Engine Version	Runtime Environme nt	URI
1.7.0	CPU	swr.{region_id}.myhuaweicloud.com/atelier/ mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7- ubuntu_18.04-x86_64-20220702120711-8590b76
1.7.0	GPU (CUDA 10.1)	swr.{region_id}.myhuaweicloud.com/atelier/ mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7- ubuntu_18.04-x86_64-20220702120711-8590b76

Al Engine Version	Runtime Environme nt	URI
1.7.0	GPU (CUDA 11.1)	swr.{region_id}.myhuaweicloud.com/atelier/ mindspore_1_7_0:mindspore_1.7.0-cuda_11.1-py_3.7- ubuntu_18.04-x86_64-20220702120711-8590b76

2.3.2 TensorFlow (CPU/GPU)-powered Inference Base Images

ModelArts provides the following inference base images powered by TensorFlow (CPU/GPU):

- Engine Version 1: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
- Engine Version 2: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04x86_64
- Engine Version 3: tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/atelier/ tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04x86_64-20221121111529-d65d817
- Image creation time: 20220713110657 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- CUDA: 10.1.243
- cuDNN: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ TensorFlow-2.1/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ TensorFlow-2.1/lib/python3.7/site-packages
- Certain pip installation packages:

Cython	0.29.21
easydict	1.9
Flask	2.0.1
grpcio	1.47.0
gunicorn	20.1.0
h5py	3.7.0
ipykernel	6.7.0
Jinja2	3.0.1
lxml	4.9.1
matplotlib	3.5.1
moxing-framework	2.1.0.5d9c87c8
numpy	1.19.5
opency-python	4.1.2.30
pandas	1.1.5
Pillow	9.2.0
pip	22.1.2
protobuf	3.20.1
psutil	5.8.0
PyYAML	5.1
requests	2.27.1
scikit-learn	0.22.1
scipy	1.5.2

.

sklearn tensorboard tensorboardX tensorflow tensorflow-estimator wheel zipp 	0.0 2.1.1 2.0 2.1.0 2.1.0 0.37.1 3.8.0		
Certain apt installat	ion packages:		
apt ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxerder-dev libatlas3-base libnuma-dev libcap-dev libssl-dev libt2-dev libbz2-dev libbz2-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libpenblas-base liblamack3 libopenblas-dev libleveldb-dev libleveldb-dev liblatlas-sease liblapack3 libopenblas-dev libleveldb-dev libleveldb-dev libleveldb-dev libleveldb-dev libleveldb-dev liblamacm1 libcap2-bin liblatlas-base-dev libgflags-dev libgflags-dev libgflags-dev libgraps-dev librdmacm1 libcap2-bin libq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip			

zlib1g-dev

Engine Version 2: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/aip/ tensorflow_1_15:tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04x86_64-20220524162601-50d6a18
- Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 20.04.4 LTS
- CUDA: 11.4.3
- cuDNN: 8.2.4.15
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ TensorFlow-1.15.5/bin/python, python 3.8.13
- Third-party package installation path: /home/ma-user/anaconda3/envs/ TensorFlow-1.15.5/lib/python3.8/site-packages
- Certain pip installation packages:

Cython 0.29.21 psutil 5.9.0 matplotlib 3.5.1 protobuf 3.20.1 tensorflow 1.15.5+nv Flask 2.0.1 grpcio 1.46.1 gunicorn 20.1.0 Pillow 9.0.1 tensorboard 1.15.0 PyYAML 6.0 pip 22.0.4 lxml 4.7.1 numpy 1.18.5 tensorflow-estimator 1.15.1

• Certain apt installation packages:

apt ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev . libssl-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base

liblapack3 libopenblas-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev liblapacke-dev libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssh-sftp-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip zlib1g-dev

Engine Version 3: tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/aip/ tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04x86_64-20220524162601-50d6a18
- Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- CUDA: 11.2.0
- cuDNN: 8.1.1.33
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ TensorFlow-2.6.0/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ TensorFlow-2.6.0/lib/python3.7/site-packages
- Certain pip installation packages: Cython 0.29.21 requests 2.27.1 easydict 1.9 tensorboardX 2.0 tensorflow 2.6.0 Flask 2.0.1 grpcio 1.46.1 gunicorn 20.1.0 idna 3.3 tensorflow-estimator 2.9.0 pandas 1.1.5 Pillow 9.0.1 lxml 4.8.0 matplotlib 3.5.1

```
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
numpy 1.17.0
opencv-python 4.1.2.30
protobuf 3.20.1
pip 21.2.2
```

• Certain apt installation packages:

apt ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base liblapack3 libopenblas-dev libprotobuf-dev . libleveldb-dev libsnappy-dev libhdf5-serial-dev liblapacke-dev libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssh-sftp-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip

zlib1g-dev

2.3.3 PyTorch (CPU/GPU)-powered Inference Base Images

ModelArts provides the following inference base images powered by PyTorch (CPU/GPU):

- Engine Version 1: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
- Engine Version 2: pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region_id}.myhuaweicloud.com/atelier/ pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04x86_64-20221118143845-d65d817
- Image creation time: 20220713110657 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- CUDA: 10.2.89
- cuDNN: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ PyTorch-1.8/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ PyTorch-1.8/lib/python3.7/site-packages

c8

• Certain pip installation packages:

Certain pip insta	llation package
Cython	0.27.3
easydict	1.9
Flask	2.0.1
fonttools	4.34.4
gunicorn	20.1.0
ipykernel	6.7.0
Jinia2	3.0.1
lxml	4.9.1
matplotlib	3.5.1
mmcv	1.2.7
moxing-framework	2.1.0.5d9c87
numpy	1.19.5
opency-python	4.1.2.30
pandas	1.1.5
Pillow	9.2.0
pip	22.1.2
protobuf	3.20.1
psutil	5.8.0
PyYAML	5.1
requests	2.27.1
scikit-learn	0.22.1
scipy	1.5.2
sklearn	0.0
tensorboard	2.1.1
tensorboardX	2.0
torch	1.8.0
torchtext	0.5.0
torchvision	0.9.0
tornado	6.2
tqdm	4.64.0
traitlets	5.3.0
typing_extensions	4.3.0
urllib3	1.26.10
watchdog	2.0.0
wcwidth	0.2.5

Werkzeug	2.1.2
wheel	0.37.1
yapf	0.32.0
zipp	3.8.0

• Certain apt installation packages:

apt . ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base liblapack3 libopenblas-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev liblapacke-dev libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssh-sftp-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip zlib1g-dev ...

Engine Version 2: pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/aip/pytorch_1_8:pytorch_1.8.2cuda_11.1-py_3.7-ubuntu_18.04-x86_64-20220524162601-50d6a18
- Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- CUDA: 11.1.1
- cuDNN: 8.0.5.39
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ PyTorch-1.8.2/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ PyTorch-1.8.2/lib/python3.7/site-packages
- Certain pip installation packages: Cython 0.27.3 mmcv 1.2.7 easydict 1.9 tensorboardX 2.0 torch 1.8.2+cu111 Flask 2.0.1 pandas 1.1.5 gunicorn 20.1.0 PyYAML 5.1 torchaudio 0.8.2 Pillow 9.0.1 psutil 5.8.0 . İxml 4.8.0 matplotlib 3.5.1 torchvision 0.9.2+cu111 pip 21.2.2 protobuf 3.20.1 numpy 1.17.0 opencv-python 4.1.2.30 scikit-learn 0.22.1
- Certain apt installation packages:

apt ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev . libssl-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base

liblapack3 libopenblas-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev liblapacke-dev libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssh-sftp-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip zlib1g-dev

2.3.4 MindSpore (CPU/GPU)-powered Inference Base Images

ModelArts provides the following inference base images powered by MindSpore (CPU/GPU):

- Engine Version 1: mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64
- Engine Version 2: mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
- Engine Version 3: mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/atelier/ mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04x86_64-20220702120711-8590b76
- Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ MindSpore/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ MindSpore/lib/python3.7/site-packages
- Certain pip installation packages:

motation pt
0.11.0
1.9
2.0.1
1.47.0
20.1.0

•

ipykernel	6.7.0
Jinja2	3.0.1
lxml	4.9.0
matplotlib	3.5.1
mindinsight	1.7.0
mindspore	1.7.0
mindvision	0.1.0
moxing-framework	2.1.0.50908708
numpy	1.17.0 headlass 46066
opency python boadle	1-11eduless 4.0.0.00
nandas	115
Pillow	911
nin	22.1.2
protobuf	3.20.1
psutil	5.8.0
PyYAML	5.1
requests	2.27.1
scikit-learn	0.22.1
scipy	1.5.2
setuptools	62.6.0
sklearn	0.0
tensorboardX	2.0
tomli	3.1.0
tornado	6.1
tadm	4.64.0
traitlets	5.3.0
treelib	1.6.1
urllib3	1.26.9
wheel	0.37.1
zipp	3.8.0
Certain ant instal	llation packages.
ant	lation packages.
apı ca-certificates	
cmake	
curl	
ethtool	
ethtool fdisk	
ethtool fdisk ffmpeg	
ethtool fdisk ffmpeg g++	
ethtool fdisk ffmpeg g++ gcc	
ethtool fdisk ffmpeg g++ gcc git	
ethtool fdisk ffmpeg g++ gcc git gpg	
ethtool fdisk ffmpeg g++ gcc git graphviz libsm6	
ethtool fdisk ffmpeg g++ gcc git graphviz libsm6 libxext6	
ethtool fdisk ffmpeg g++ gcc git graphviz libsm6 libxext6 libopency-dey	
ethtool fdisk ffmpeg g++ gcc git graphviz libsm6 libxext6 libopencv-dev libxrender-dev	
ethtool fdisk ffmpeg g++ gcc git graphviz libsm6 libxext6 libxender-dev libxrender-dev libatlas3-base	
ethtool fdisk ffmpeg g++ gcc git graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtxrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev libbz2-dev liblzma-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libcap-dev liblz-dev liblz-dev liblz-dev liblzma-dev libbz2-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtxrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev liblz-dev liblz-dev libbost-graph-dev libsndfile1	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev liblz-dev liblz-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev liblz-dev liblz2-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base liblanack3	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libt2-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base liblapack3 libopenblas-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libboost-graph-dev libbondfile1 libcurl4-openssl-dev libopenblas-base liblapack3 libopenblas-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libt2-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libpenblas-base liblapack3 libopenblas-dev libpenblas-dev libpenblas-dev libpenblas-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libt2-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libpenblas-base liblapack3 libopenblas-dev libleveldb-dev libleveldb-dev libsnappy-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev libt2-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libpopenblas-base liblapack3 libopenblas-dev libleveldb-dev libsnappy-dev libsnappy-dev	
ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libtrender-dev libatlas3-base libnuma-dev libcap-dev liblz-dev liblz-dev libbz2-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libbondfile1 libcurl4-openssl-dev libpenblas-base liblapack3 libopenblas-dev libsnappy-dev libsnappy-dev liblapacke-dev	

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpg-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssh-sftp-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip zlib1g-dev

Engine Version 2: mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/atelier/ mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04x86_64-20220702120711-8590b76
- Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- CUDA: 10.1.243
- cuDNN: 7.6.5.32
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ MindSpore/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ MindSpore/lib/python3.7/site-packages
- Certain pip installation packages:

Certain pip instau	ατιστι μα	ackayes.
cycler	0.11.0	
easydict	1.9	
Flask	2.0.1	
grpcio	1.47.0	
gunicorn	20.1.0	
ipykernel	6.7.0	
Jinja2	3.0.1	
lxml	4.9.0	
matplotlib	3.5.1	
mindinsight	1.7.0	
mindspore	1.7.0	
mindvision	0.1.0	
moxing-framework	2.1	1.0.5d9c87c8
numpy	1.17.0	
opencv-contrib-python	-headless	4.6.0.66
opencv-python-headles	ss 4	.6.0.66
pandas	1.1.5	
Pillow	9.1.1	
pip	22.1.2	
protobuf	3.20.1	
psutil	5.8.0	
PyYAML	5.1	

Certain apt installation packages: apt ca-certificates cmake cuda curd ethool fidisk fimpeg g++ gcc gjt ggp ggp ggp ggp ggp ggp ggp gg	requests scikit-learn scipy setuptools sklearn tensorboardX threadpoolctl tomli tornado tqdm traitlets treelib urllib3 wheel zipp	$\begin{array}{c} 2.27.1 \\ 0.22.1 \\ 1.5.2 \\ 62.6.0 \\ 0.0 \\ 2.0 \\ 3.1.0 \\ 2.0.1 \\ 6.1 \\ 4.64.0 \\ 5.3.0 \\ 1.6.1 \\ 1.26.9 \\ 0.37.1 \\ 3.8.0 \end{array}$		
apt ca-certificates cmake cuda curl ethtool fdisk ffmpeg gr++ gcc git grp graphviz libsm6 libxext6 libxext6 libxext6 libxerde-dev libtas2-base libtas2-base libtas2-base libtas2-base libtas2-base libtas2-dev libt2-dev libt2-dev libt2-dev libt2-dev libtsd-dev libtas4 libt	Certain apt install	ation packages:		
renic-cerver	apt ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libstas3-base libnuma-dev libatlas3-base libnuma-dev libs1-dev libb2-dev libb22-dev libb22-dev libb22-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libboost-graph-dev libbondile1 libcurl4-openssl-dev libprotobuf-dev libleveldb-dev libleveldb-dev liblapack3 libopenblas-base liblapack4 liblaback4 liblaback4 liblaback4 liblaback4 liblaback4 liblaback4 l			

redis-tools rpm tar tofrodos unzip vim wget zip zlib1g-dev

Engine Version 3: mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

- Image path: swr.{region}.myhuaweicloud.com/atelier/ mindspore_1_7_0:mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04x86_64-20220702120711-8590b76
- Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
- Image system version: Ubuntu 18.04.4 LTS
- CUDA: 11.1.1
- cuDNN: 8.0.5.39
- Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/ MindSpore/bin/python, python 3.7.10
- Third-party package installation path: /home/ma-user/anaconda3/envs/ MindSpore/lib/python3.7/site-packages
- Certain pip installation packages:

Certain pip install	ation packages:
cycler	0.11.0
easydict	1.9
Flask	2.0.1
grpcio	1.47.0
gunicorn	20.1.0
ipykernel	6.7.0
Jinja2	3.0.1
lxml	4.9.0
matplotlib	3.5.1
mindinsight	1.7.0
mindspore	1.7.0
mindvision	0.1.0
moxing-framework	2.1.0.5d9c87c8
numpy	1.17.0
opency-contrib-python	-headless 4.6.0.66
opency-python-headles	s 4.6.0.66
pandas	1.1.5
Pillow	9.1.1
pip	22.1.2
protobuf	3.20.1
, psutil	5.8.0
PyYAML	5.1
requests	2.27.1
scikit-learn	0.22.1
scipy	1.5.2
setuptools	62.6.0
sklearn	0.0
tensorboardX	2.0
threadpoolctl	3.1.0
tomli	2.0.1
tornado	6.1
tqdm	4.64.0
traitlets	5.3.0
treelib	1.6.1
urllib3	1.26.9
wheel	0.37.1
zipp	3.8.0

Certain apt installation packages:

apt . ca-certificates cmake cuda curl ethtool fdisk ffmpeg g++ gcc git gpg graphviz libsm6 libxext6 libopencv-dev libxrender-dev libatlas3-base libnuma-dev libcap-dev libssl-dev liblz-dev libbz2-dev liblzma-dev libboost-graph-dev libsndfile1 libcurl4-openssl-dev libopenblas-base liblapack3 libopenblas-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev liblapacke-dev libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server openssh-sftp-server openssl protobuf-compiler redis-server redis-tools rpm tar tofrodos unzip vim wget zip zlib1g-dev

3 Using Custom Images in Notebook Instances

3.1 Registering an Image in ModelArts

After a custom image is created, register it on the ModelArts **Image Management** page before using it in notebook.

NOTE

Only the sub-users (IAM users) of the account can register and use the SWR images if the image type is **Private**.

Other users can register and use SWR images only when the image type is **Public**.

- 1. Log in to the ModelArts management console and choose **Image Management**. Then, click **Register**.
- 2. Configure parameters and click Register.
 - SWR Source: Select a built image as the image source. You can copy the

complete SWR address or click by to select the target image for registration.

<	Register Image							1
	* SWR Source	Example: <swr-domain-name>/<</swr-domain-name>	namespace>/ <repository>:<taq< th=""><th>></th><th>Check A</th><th>vallable Images</th><th></th><th></th></taq<></repository>	>	Check A	vallable Images		
	Description							
	* Architecture	X86_64	0/25	5				
	* Туре	🔽 CPU 🔲 GPU						
								×
		My Images / test /	1/d	eep-learning1/test:1.0				С
		My Images						Q
		Image Version		Updated On 🔶		Template Address	Size	
		Sack						
		 I.0 					4.72GB	
				OK Cancel				

- **Architecture** and **Type**: Configure them based on the actual framework of the custom image.
- 3. View the registered image on the **Image Management** page.

Figure 3-2 Image list

Image Management	PyCharm Toolkit M ModelArts SDK Register		
The Search or filter by keyword.			Q C 🛛
Name 💠	Organization \$	Total Versions	Operation
msite-2.0.0-cann-6.3.1	dev-custom	1 Jul 28, 2023 14:25:59 GMT+0	16:00 Details
tensorflow2_1_test1		1 Sep 26, 2023 17:15:34 GMT+	+08:00 Details

Creating a Notebook Instance

Click the image name. On the image details page that appears, click **Create Notebook**. The page for creating a notebook instance using this image is displayed.

Figure 3-3 Image details page

	pytoren_r_o							
In	nage Version/1D ÷	Status	Resource Type	Size	SWR Address	Description	Created At \protect	Operation
vi di	l	🔮 Available	CPU,GPU	2.15 G8	SWL01-	-	Sep 07, 2023 17:21:39 GMT+08:00	Create Notebook Sync Delete

Synchronizing an Image

After the image fault is rectified, go to the image details page. Click **Sync** in the **Operation** column to refresh the image status.

3.2 Creating a Custom Image

You can create a custom image in any of the following ways:

- Method 1: Use a preset image of notebook instances to create a development environment instance. Then, install and configure dependencies in the environment. After the configuration, use the image saving function provided by the development environment to save the running instance as a custom container image. For details, see **Saving a Notebook Instance as a Custom Image**.
- Method 2: Use ModelArts base images and image creation templates to write a Dockerfile and create your own image on a notebook instance. Then, register the image to create a new development environment based on your needs. For details, see Creating and Using a Custom Image in Notebook.
- Method 3: Use ModelArts base images or third-party images to write a Dockerfile on an ECS and to reconstruct the ModelArts base images or thirdparty images. This allows you to customize Docker images that meet ModelArts requirements and push the images to SWR. For details, see Creating a Custom Image on an ECS and Using It in Notebook.

3.3 Saving a Notebook Instance as a Custom Image

3.3.1 Saving a Notebook Environment Image

To save a notebook environment image, do as follows: Create a notebook instance using a preset image, install custom software and dependencies on the base image, and save the running instance as a container image.

In the saved image, the installed dependencies are retained. The data stored in **home/ma-user/work** for persistent storage will not be stored. When you use VS Code for remote development, the plug-ins installed on the Server are retained.

NOTE

Images stored in a notebook instance cannot be larger than 35 GB and there cannot be more than 125 image layers. Otherwise, the image cannot be saved.

If error "The container size (xx) is greater than the threshold (25G)" is reported when an image is saved, handle the error by referring to What Do I Do If Error "The container size (xG) is greater than the threshold (25G)" Is Displayed When I Save an Image?.

Prerequisites

The notebook instance is in **Running** state.

Saving an Image

- Log in to the ModelArts management console and choose DevEnviron > Notebook in the navigation pane on the left to switch to notebook of the new version.
- In the notebook instance list, select the target notebook instance and choose Save Image from the More drop-down list in the Operation column. The Save Image dialog box is displayed.

Figure 3-4 Save Image

3. In the **Save Image** dialog box, configure parameters. Click **OK** to save the image.

Choose an organization from the **Organization** drop-down list. If no organization is available, click **Create** on the right to create one.

Users in an organization can share all images in the organization.

4. The image will be saved as a snapshot, and it will take about 5 minutes. During this period of time, do not perform any operations on the instance. Figure 3-5 Saving as a snapshot

notebook	C Snapshotting
NOTICE	

The time required for saving an image as a snapshot will be counted in the instance running duration. If the instance running duration expires before the snapshot is saved, saving the image will fail.

- 5. After the image is saved, the instance status changes to **Running**. View the image on the **Image Management** page.
- 6. Click the name of the image to view its details.

3.3.2 Using a Custom Image to Create a Notebook Instance

The images saved from a notebook instance can be viewed on the **Image Management** page. You can use these images to create new notebook instances, which inherit the software configurations of the original notebook instances.

You can use either of the following methods:

Method 1: On the **Create Notebook** page, click **Private Image** and select the saved image.

Figure 3-6 Selecting a custom image to create a notebook instance

Method 2: On the **Image Management** page, click the target image to access its details page. Then, click **Create Notebook**.

3.4 Creating and Using a Custom Image in Notebook

3.4.1 Application Scenarios and Process

If preset images cannot meet your service requirements, you can create container images based on the preset images for development and training.

Generally, you will need to reconstruct the ModelArts development environment, for example, by installing, upgrading, or uninstalling some packages. However, the root permission is required when certain packages are installed or upgraded. The running notebook instance does not have the root permission. As a result, you

need to install the software that requires the root permission in the notebook instance, which is currently unavailable in the preset development environment.

You need to write a Dockerfile based on a preset public image to customize your image. Then, debug the image so that it can be used in ModelArts. At last, register the image with ModelArts so that it can be used to create development environments to meet your service requirements.

This example shows how to use **ma-cli** commands in ModelArts CLI to create and register a custom image for AI development with a PyTorch base image. For details, see **ma-cli Image Building Command**. The following figure shows the whole process.

Figure 3-7 Creating an image

3.4.2 Step 1 Creating a Custom Image

This section shows you how to create an image by loading an image creation template and writing a Dockerfile. Ensure that you have created the development environment and opened a terminal on the **Notebook** page. For details about Dockerfiles, see **Dockerfile reference**.

Step 1 Configure authentication information, specify a profile, and enter the account information as prompted. For more information about authentication, see ma-cli Authentication.

ma-cli configure --auth PWD -P xxx

Step 2 Run **env|grep -i CURRENT_IMAGE_NAME** to query the image used by the current instance.

(PyTorch-1.8) [ma-user work]≸env|grep -i CURRENT_IMAGE_NAME <u>CURRENT_TMAGE_NAME=swr.ap-southeast-1.myhuaweicloud.c</u>om/atelier/pytorch 1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-20220926104358-041ba2

Step 3 Create an image.

1. Obtain the SWR address of the base image.

CURRENT_IMAGE_NAME=swr.ap-southeast-1.myhuaweicloud.com/atelier/ pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04x86_64-20220926104358-041ba2e

Load an image creation template.
 Run the ma-cli image get-template command to query the image template.

(MindSpore) [ma-user work]\$ma-cli	image get-template
Template Name	Description
upgrade_ascend_mindspore_1.8.1_and	i_cann_5.1.RC2 Upgrade Ascend MindSpore to 1.8.1 and CANN version to 5.1.RC2
(MindSpore) [ma-user work]\$ma-cli image get-tem	plate
Tempiate Name	Description
customize_from_ubuntu_18.04_to_modelarts upgrade_current_notebook_apt_packages migrate_3rd_party_image to_modelarts build_handwritten_number_inference_application undeta_dii_image_im_a exclama.	Add ma-user, apt install packages and create a new conda environment with pip based on scratch ubuntu 18.0 Install apt packages like ffmpeg, gcc-8, g++8 based on current Notebook image General template for migrating your own or open source image to ModelArts Create a new AI application, used to generate an image to deploy and infer in ModelArts Install bis mecknows becaute on DNI image
forward compation with 11 image to medalents	Ministra and forward compation of 11 x to ModelAnte by ungrading only user mode (IDA components

Run the **ma-cli image add-template** command to load the image template to the specified folder. The default path is where the current command is located. For example, load the **upgrade_current_notebook_apt_packages** image creation template.

```
ma-cli image add-template upgrade_current_notebook_apt_packages
```

3. Modify a Dockerfile.

(PyTorch-1.8) [ma-user work]\$ma-cli image add-template u

The Dockerfile in this example is modified based on the base PyTorch image pytorch1.8-cuda10.2-cudnn7-ubuntu18.04, the image template upgrade_current_notebook_apt_packages is loaded, and GCC and G++ are upgraded.

After the image template is loaded, the Dockerfile will be automatically loaded in **.ma/upgrade_current_notebook_apt_packages**. The content is as follows and you can modify it based on your needs.

FROM swr.ap-southeast-1.myhuaweicloud.com/atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-20220926104358-041ba2e

```
# Set proxy to download internet resources
ENV HTTP_PROXY=http://proxy.modelarts.com:80 \
http_proxy=http://proxy.modelarts.com:80 \
HTTPS_PROXY=http://proxy.modelarts.com:80 \
https_proxy=http://proxy.modelarts.com:80
```

USER root

```
\# Config apt source which can accelerate the apt package download speed. Also install ffmpeg and gcc-8 in root mode
```

```
RUN cp -f /etc/apt/sources.list /etc/apt/sources.list.bak && \
```

sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ apt update && \

- apt -y install ffmpeg && \
- apt install -y --no-install-recommends gcc-8 g++-8 && apt-get autoremove -y && \
- update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80 --slave /usr/bin/g++ g++ /usr/bin/g+ +-8

ModelArts requires ma-user as the default user to start image USER ma-user

4. Build an image.

Run the **ma-cli image build** command to build an image with the Dockerfile. For more information, see **Creating an Image in ModelArts Notebook**.

ma-cli image build .ma/upgrade_current_notebook_apt_packages/Dockerfile -swr notebook-test/ my_image:0.0.1 -P XXX

The Dockerfile is stored in .ma/upgrade_current_notebook_apt_package/ Dockerfile and the new image is stored in notebook-test/my_image:0.0.1 in SWR. XXX indicates the profile specified for authentication.

----End

3.4.3 Step 2 Registering a New Image

After an image is debugged, register it with ModelArts image management so that the image can be used in ModelArts.

Use either of the following methods to register the image with ModelArts:

 Method 1: Run the ma-cli image register command to register an image. Then, the information of the registered image is returned, including image ID and name, as shown in the following figure. For more information, see Registering SWR Images with ModelArts Image Management. ma-cli image register --swr-path=swr.ap-southeast-1.myhuaweicloud.com/notebook-test/ my_image:0.0.1 -P XXX

Figure 3-8 Registered image

• **Method 2**: Register the image on the ModelArts management console. Log in to the ModelArts management console. In the navigation pane on the

left, select **Image Management**. The **Image Management** page is displayed.

Click **Register**. Paste the complete SWR address, or click **D** to select a private image from SWR for registration, as shown in **Figure 3-9**.

Select the architecture and type based on the site requirements. The architecture and type must be the same as those of the image source.

Figure 3-9 Selecting an image

Select Image				×
My Images / / swr.cn-				С
My Images				Q
Image Version	Updated On 🔶	Template Address	Size	
Seck				
● v3	Sep 15, 2023 14:16:29 GMT+08:00		2.15GB	
○ ¹ / ₂ v ²	Sep 14, 2023 18:57:47 GMT+08:00			
	OK Cancel			

3.4.4 Step 3 Using a New Image to Create a Development Environment

Procedure

After an image is registered, it is available for development environment creation. You can log in to the ModelArts management console, choose **DevEnviron** > **Notebook**, and select the image during creation.

3.5 Creating a Custom Image on an ECS and Using It in Notebook

3.5.1 Application Scenarios and Process

Generally, you will need to reconstruct the ModelArts development environment, for example, by installing, upgrading, or uninstalling some packages. However, the root permission is required when certain packages are installed or upgraded. The running notebook instance does not have the root permission. As a result, you need to install the software that requires the root permission in the notebook instance, which is currently unavailable in the preset development environment.

You can write a Dockerfile based on a preset base image or third-party image to customize your image. Then, you can register the image to create a new development environment based on your needs.

This section describes how to install PyTorch 1.8, FFmpeg 3, and GCC 8 on an Ubuntu image to create a new AI development environment.

The following figure shows the whole process.

Figure 3-10 Creating and debugging an image

3.5.2 Step 1 Preparing a Docker Server and Configuring an Environment

Prepare a server with Docker enabled. If no such a server is available, create an ECS, buy an EIP, and install required software on it. Subsequent image building, debugging, and registration are all performed on this server.

ModelArts provides Ubuntu scripts for you to install Docker easier.

NOTE

The operations on the local Linux server are the same as those on the ECS. For details, see this case.

Creating an ECS

• Log in to the ECS console and click **Buy ECS**. Select a public image (an Ubuntu 18.04 image is recommended) and set the system disk to 100 GiB. For more details, see **Purchasing and Logging In to a Linux ECS**.

Figure 3-11 Selecting an image and a disk

Image	Public image	Private image	Shared image	Marketplace image	?	
	🖒 Ubuntu	▼ Ubuntu 1	8.04 server 64bit(40 GiB)		•	С
Protection	Basic edition (one-me Advanced HSS editio None	onth free trial) ⑦	or a yearly package) 👩			
System Disk	High I/O	▼ − 10	0 + GiB IOPS limi	t: 2,600, IOPS <u>burst limit</u> : 5,00)0 (?)	Show 🗸
	Add Data Disk Disks	s you can still add: 23	or reported concretely			

• Purchase an EIP and bind it to the ECS. For details, see **Configure Network**.

Configuring an ECS

1. Run the following command on the Docker ECS to download the installation script:

wget https://cnnorth4-modelarts-sdk.obs.cn-north-4.myhuaweicloud.com/modelarts/custom-imagebuild/install_on_ubuntu1804.sh

NOTE

Only Ubuntu scripts are supported.

2. Run the following command on the Docker ECS to configure the environment: bash install_on_ubuntu1804.sh

Figure 3-12 Configured

Congratulations! The environment has been configured successfully.

source /etc/profile

The installation script is executed to:

- a. Install Docker.
- b. If the Docker ECS runs on GPUs, install nvidia-docker2 to mount the GPUs to the Docker container.

3.5.3 Step 2 Creating a Custom Image

This section describes how to edit a Dockerfile, use it to create an image, and use the created image to create a notebook instance. For details about how to edit a Dockerfile, see **Dockerfile reference**.

Prerequisites

You have prepared a Docker server by referring to **Step 1 Preparing a Docker Server and Configuring an Environment**.

Querying Base Images (Skip This Step for Third-Party Images)

For details about ModelArts base images, see **Notebook Base Image List**. Check the image URL in the corresponding section based on the engine type of the preset image.

Creating an Image

- 1. Access SWR.
 - a. Log in to the SWR console.

Login Command

b. In the navigation pane on the left, choose **Dashboard**, and click **Generate Login Command** in the upper right corner. On the displayed page, copy the login command.

Figure 3-13 Obtaining the login command

×

D NOTE

- The validity period of the generated login command is 24 hours. To obtain a long-term valid login command, see **Obtaining a Login Command with Long-Term Validity**. After you obtain a long-term valid login command, your temporary login commands will still be valid as long as they are in their validity periods.
- The domain name at the end of the login command is the image repository address. Record the address for later use.
- c. Run the login command on the machine where the container engine is installed.

The message "Login Succeeded" will be displayed upon a successful login.

- 2. Pull a base image or third-party image. The following uses a third-party image as an example. docker pull swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/ubuntu:18.04 #Your organization name and image
- 3. Compile a Dockerfile.

Run the **vim** command to create a Dockerfile. If a ModelArts base image is used, see **Dockerfile on a ModelArts Base Image** for details about the Dockerfile.

If a third-party image is used, add user **ma-user** whose **UID** is **1000** and user group **ma-group** whose **GID** is **100**. For details, see **Dockerfile on a Non-ModelArts Base Image**.

In this case, PyTorch 1.8, FFmpeg 3, and GCC 8 will be installed on an Ubuntu image to build an AI image.

4. Build an image.

Run the **docker build** command to build a new image from the Dockerfile. The description of the command parameters are as follows:

- -t specifies the new image path, including region information, organization name, image name, and version. Set this parameter based on the real-life scenario. Use a complete SWR address for debugging and registration.
- **-f** specifies the Dockerfile name. Set this parameter based on the real-life scenario.
- at the end specifies that the context is the current directory. Set this
 parameter based on the real-life scenario.

docker build -t swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/pytorch_1_8:v1 -f Dockerfile .

Figure 3-14 Image created

Successfully built 495b3e4ff658

Successfully tagged swr.cn-north-4.myhuaweicloud.com/sdk-test/pytorch_1_8:v1

Dockerfile on a ModelArts Base Image

Run the **vim** command to create a Dockerfile. If the base image is provided by ModelArts, the content of the Dockerfile is as follows:

FROM swr.ap-southeast-1.myhuaweicloud.com/atelier/notebook2.0-pytorch-1.4-kernel-cp37:3.3.3-release-v1-20220114

USER root

```
# section1: config apt source
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak && \
  echo -e "deb http://repo.huaweicloud.com/ubuntu/ bionic main restricted\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic-updates main restricted\ndeb http://repo.huaweicloud.com/ubuntu/
bionic universe\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates universe\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates
multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-backports main restricted universe multiverse
\ndeb http://repo.huaweicloud.com/ubuntu bionic-security main restricted\ndeb http://
repo.huaweicloud.com/ubuntu bionic-security universe\ndeb http://repo.huaweicloud.com/ubuntu bionic-
security multiverse" > /etc/apt/sources.list && \
  apt-get update
# section2: install ffmpeg and gcc
RUN apt-get -y install ffmpeg && \
  apt -y install gcc-8 g++-8 && \
  update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80 --slave /usr/bin/g++ g++ /usr/bin/g++-8
&& \
  rm $HOME/.pip/pip.conf
USER ma-user
# section3: configure conda source and pip source
RUN echo -e "channels:\n - defaults\nshow channel urls: true\ndefault channels:\n - https://
mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2\ncustom_channels:\n_conda-forge: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
\n bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n menpo: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/
cloud\n pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n simpleitk: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud" > $HOME/.condarc && \
  echo -e "[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\n[install]\ntrusted-host = https://
pypi.tuna.tsinghua.edu.cn" > $HOME/.pip/pip.conf
# section4: create a conda environment(only support python=3.7) and install pytorch1.8
RUN source /home/ma-user/anaconda3/bin/activate && \
  conda create -y --name pytorch_1_8 python=3.7 && \
  conda activate pytorch_1_8 && \
  pip install torch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 && \
  conda deactivate
```

Dockerfile on a Non-ModelArts Base Image

If a third-party image is used, add user **ma-user** whose **UID** is **1000** and user group **ma-group** whose **GID** is **100** to the Dockerfile. If UID 1000 or GID 100 in the base image has been used by another user or user group, delete the user or user group. **The user and user group have been added to the Dockerfile in this case. You can directly use them.**

NOTE

You only need to set the user **ma-user** whose **UID** is **1000** and the user group **ma-group** whose **GID** is **100**, and grant the read, write, and execute permissions on the target directory to user **ma-user**.

Run the **vim** command to create a Dockerfile and add a third-party (non-ModelArts) image as the base image, for example, ubuntu 18.04. The content of the Dockerfile is as follows:

```
# Replace it with the actual image version.
FROM ubuntu:18.04
# Set the user ma-user whose UID is 1000 and the user group ma-group whose GID is 10
USER root
RUN default_user=$(getent passwd 1000 | awk -F ':' '{print $1}') || echo "uid: 1000 does not exist" && \
default_group=$(getent group 100 | awk -F ':' '{print $1}') || echo "gid: 100 does not exist" && \
if [ ! -z ${default_user}] && [ ${default_user} != "ma-user" ]; then \
userdel -r ${default_user}; \
fi && \
if [ ! -z ${default_group} ] && [ ${default_group} != "ma-group" ]; then \
groupdel -f ${default_group} ] && [ ${default_group} != "ma-group" ]; then \
fi && \
```

groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user && \ # Grant the read, write, and execute permissions on the target directory to the user **ma-user**. chmod -R 750 /home/ma-user

#Configure the APT source and install the ZIP and Wget tools (required for installing conda). RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak && $\$

echo "deb http://repo.huaweicloud.com/ubuntu/ bionic main restricted\ndeb http:// repo.huaweicloud.com/ubuntu/ bionic-updates main restricted\ndeb http://repo.huaweicloud.com/ubuntu/ bionic universe\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates universe\ndeb http:// repo.huaweicloud.com/ubuntu/ bionic multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-backports main restricted universe multiverse \ndeb http://repo.huaweicloud.com/ubuntu bionic-security main restricted\ndeb http:// repo.huaweicloud.com/ubuntu bionic-security universe\ndeb http:// repo.huaweicloud.com/ubuntu bionic-security universe http:// apt-get update && \ apt-get install -y zip wget

#Modifying the system Configuration of the image (required for creating the Conda environment) RUN rm /bin/sh && ln -s /bin/bash /bin/sh

#Switch to user **ma-user**, download miniconda from the Tsinghua repository, and install miniconda in / **home/ma-user**.

```
USER ma-user
```

RUN cd /home/ma-user/ && \

wget --no-check-certificate https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.6.14-Linux-x86_64.sh && $\$

```
bash Miniconda3-4.6.14-Linux-x86_64.sh -b -p /home/ma-user/anaconda3 && \
rm -rf Miniconda3-4.6.14-Linux-x86_64.sh
```

#Configure the conda and pip sources RUN mkdir -p /home/ma-user/.pip && \

echo -e "channels:\n - defaults\nshow_channel_urls: true\ndefault_channels:\n - https://

mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r \n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2" > /home/ma-user/.condarc && \

echo -e "[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\n[install]\ntrusted-host = https://pypi.tuna.tsinghua.edu.cn" > /home/ma-user/.pip/pip.conf

#Create the conda environment and install the Python third-party package. The ipykernel package is mandatory for starting a kernel.

```
RUN source /home/ma-user/anaconda3/bin/activate && \
conda create -y --name pytorch_1_8 python=3.7 && \
conda activate pytorch_1_8 && \
pip install torch==1.8.1 torchvision==0.9.1 && \
pip install ipykernel==6.7.0 && \
conda init bash && \
conda deactivate
```

#Install FFmpeg and GCC
USER root
RUN apt-get -y install ffmpeg && \
 apt -y install gcc-8 g++-8

3.5.4 Step 3 Registering a New Image

After an image is debugged, register it with ModelArts image management so that the image can be used in ModelArts.

1. Push the image to SWR.

Log in to SWR first. For details, see **Log In to SWR**. Run the following command to push the image:

docker push swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/pytorch_1_8:v1

The image is then available on SWR.
Figure 3-15 Pushing the image to SWR

ags	Description	Pull/Push	Permissions	Sharing	Triggers	Retention	Synchronization Records		
Sync	Delete								
Enter ar	image tag.								a
	ag ¢			Si	ze		Image Pull Command	Updated 💠	Operation
	VPITest-images			4.	5 GB		docker pull swr.cn-north- 7.myhuaweicloud.com/n	Sep 12, 2023 06:30:44 GMT+08:00	Scan Sync More 🕶

2. Register an image.

Registering an Image on the ModelArts Console

Log in to the ModelArts console. In the navigation pane on the left, select **Image Management** to access the image management page. Click **Register**.

Set **SWR Source** to the image pushed to SWR in **Step 1**. Click to select an existing image you want to register, as shown in **Figure 3-16**.

NOTE

When you register a new image, ensure that the architecture and type are the same as those of the image source. Otherwise, the creation fails.

Figure 3-16 Registering an image

<	Register Image					
	* SWR Source	Example: <swr-doma< th=""><th>Select Image</th><th></th><th></th><th></th></swr-doma<>	Select Image			
	Description		My Images / pytorch_1_8 / swr.ap-	southeast-1.myhuaweicloud.com/n t/pytorch_1_8:v1		
			My Images			
	* Architecture	X86_64	Image Version	Updated On 🌩	Template Address	Size
	* Туре	CPU 🗌 GP	S Back			
-			● v1	Dec 14, 2023 10:32:49 GMT+08:00	swr.ap-southeast-1	2.16GB
				OK Cancel		

3.5.5 Step 5 Creating and Starting a Development Environment

Procedure

- After the image is created, log in to the ModelArts console, go to the notebook tab, and choose the image registered in Step 3 Registering a New Image to create a development environment.
- 2. Go to the notebook list, click **Open** to start the created development environment.

5	
Launcher	
	Notebook
	Puterch-18 pythep-3.7.10
	Console
	PyTorch-1.8 Python-3.7.10
	\$_ Other
	S_ Eminal Markdown File Python File Tensorboard

Figure 3-17 Opening a development environment

3. Open a terminal to check the conda environment. For more information about conda, see the **official website**.

Each kernel in the development environment is essentially a conda environment installed in **/home/ma-user/anaconda3/**. Run the **/home/mauser/anaconda3/bin/conda env list** command to check the conda environment.

Figure 3-18 Checking the conda environment

4 Using a Custom Image to Train Models (Model Training)

4.1 Overview

The subscribed algorithms and preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models.

Customizing an image requires a deep understanding of containers. Use this method only if the subscribed algorithms and preset images cannot meet your requirements. Custom images can be used to train models in ModelArts only after they are uploaded to the Software Repository for Container (SWR).

You can use custom images for training on ModelArts in either of the following ways:

• Using a preset image with customization

If you use a preset image to create a training job and you need to modify or add some software dependencies based on the preset image, you can customize the preset image. In this case, select a preset image and choose **Customize** from the framework version drop-down list box.

• Using a custom image

You can create an image based on the ModelArts image specifications, select your own image and configure the code directory (optional) and boot command to create a training job.

NOTE

When you use a custom image to create a training job, the boot command must be executed in the **/home/ma-user** directory. Otherwise, the training job may run abnormally.

Using a Preset Image with Customization

The only difference between this method and creating a training job totally based on a preset image is that you must select an image. You can create a custom image based on a preset image.

* Boot Mode	1 Preset image	Custom image	
. Bootmode			
		Customize	~
★ Image			Select
* Code Directory			Select
* Boot File ?			Select

Figure 4-1 Creating an algorithm using a preset image with customization

The process of this method is the same as that of creating a training job based on a preset image. For example:

- The system automatically injects environment variables.
 - PATH=\${MA_HOME}/anaconda/bin:\${PATH}
 - LD_LIBRARY_PATH=\${MA_HOME}/anaconda/lib:\${LD_LIBRARY_PATH}
 - PYTHONPATH=\${MA_JOB_DIR}:\${PYTHONPATH}
- The selected boot file will be automatically started using Python commands. Ensure that the Python environment is correct. The PATH environment variable is automatically injected. Run the following commands to check the Python version for the training job:
 - export MA_HOME=/home/ma-user; docker run --rm {image} \$ {MA_HOME}/anaconda/bin/python -V
 - docker run --rm {image} \$(which python) -V
- The system automatically adds hyperparameters associated with the preset image.

Using a Custom Image

Figure 4-2 Creating an algorithm using a custom image

* Boot Mode	Preset image	Custom image	
* Image			Select
Code Directory			Select
* Boot Command (?)	1		

For details about how to use custom images supported by training, see Using a Custom Image to Create a CPU- or GPU-based Training Job.

If all used images are customized, do as follows to use a specified Conda environment to start training:

Training jobs do not run in a shell. Therefore, you are not allowed to run the **conda activate** command to activate a specified Conda environment. In this case, use other methods to start training.

For example, Conda in your custom image is installed in the **/home/ma-user/ anaconda3** directory, the Conda environment is **python-3.7.10**, and the training script is stored in **/home/ma-user/modelarts/user-job-dir/code/train.py**. Use a specified Conda environment to start training in one of the following ways:

 Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and ANACONDA_DIR environment variables for the image.

Run the **python** command to start the training script. The following shows an example:

python /home/ma-user/modelarts/user-job-dir/code/train.py

• Method 2: Use the absolute path of Conda environment Python.

Run the **/home/ma-user/anaconda3/envs/python-3.7.10/bin/python** command to start the training script. The following shows an example: /home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/ code/train.py

• Method 3: Configure the path environment variable.

Configure the bin directory of the specified Conda environment into the path environment variable. Run the **python** command to start the training script. The following shows an example:

export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:\$PATH; python /home/ma-user/ modelarts/user-job-dir/code/train.py

• Method 4: Run the **conda run -n** command.

Run the **/home/ma-user/anaconda3/bin/conda run -n python-3.7.10** command to execute the training. The following shows an example: /home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/userjob-dir/code/train.py

D NOTE

If there is an error indicating that the .so file is unavailable in the **\$ANACONDA_DIR/envs/ \$DEFAULT_CONDA_ENV_NAME/lib** directory, add the directory to **LD_LIBRARY_PATH** and place the following command before the preceding boot command:

export LD_LIBRARY_PATH=\$ANACONDA_DIR/envs/\$DEFAULT_CONDA_ENV_NAME/ lib:\$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:

export LD_LIBRARY_PATH=\$ANACONDA_DIR/envs/\$DEFAULT_CONDA_ENV_NAME/ lib:\$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

4.2 Example: Creating a Custom Image for Training

4.2.1 Example: Creating a Custom Image for Training (PyTorch + CPU/GPU)

This section describes how to create an image and use the image for training on the ModelArts platform. The AI engine used for training is PyTorch, and the resources are CPUs or GPUs.

NOTE

This section applies only to training jobs of the new version.

Scenarios

In this example, create a custom image by writing a Dockerfile on a Linux x86_64 host running the Ubuntu 18.04 operating system.

Objective: Build and install container images of the following software and use the images and CPUs/GPUs for training on ModelArts.

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- pytorch-1.8.1

Procedure

Before using a custom image to create a training job, you need to be familiar with Docker and have development experience. The following is the detailed procedure:

- 1. Prerequisites
- 2. Step 1 Creating an OBS Bucket and Folder
- 3. Step 2 Preparing the Training Script and Uploading It to OBS
- 4. Step 3 Preparing a Host
- 5. Step 4 Creating a Custom Image
- 6. Step 5 Uploading an Image to SWR
- 7. Step 6 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei ID and enabled Huawei Cloud services, and the account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training code. Table 4-1 lists the folders to be created. Replace the bucket name and folder names in the example with actual names.

For details about how to create an OBS bucket and folder, see **Creating a Bucket** and **Creating a Folder**.

Ensure that the OBS directory you use and ModelArts are in the same region.

 Table 4-1
 Folder to create

Name	Description
obs://test-modelarts/pytorch/ demo-code/	Stores the training script.
obs://test-modelarts/pytorch/log/	Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS

Prepare the training script **pytorch-verification.py** and upload it to the **obs://test-modelarts/pytorch/demo-code/** folder of the OBS bucket.

The **pytorch-verification.py** file contains the following information:

```
import torch
import torch.nn as nn
x = torch.randn(5, 3)
print(x)
available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
y = torch.randn(5, 3).to(available_dev)
print(y)
```

Step 3 Preparing a Host

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC will do.

For details about how to purchase an ECS, see **Purchasing and Logging In to a Linux ECS**. Select a public image. An Ubuntu 18.04 image is recommended.

CPU Architecture	x86 Kunpe	ng				
Specifications	Latest generation	▼ vCPUs 4v	/CPUs	▼ Memory	4GiB	
	Flavor Name		vCPUs JΞ	м	emory ↓Ξ	
	t6.xlarge.1		4 vCPUs	4	GiB	
	Selected specifications	General comput To view the credit	ing-basic t6.xlarge.1 Is of a T6 ECS, choose	4 vCPUs 4 GiB More > Manage Credi	ts.	
Image	Public image	Private image	Shared image	Marketplace imag	e	
	😋 Ubuntu	▼ Ubuntu 18.0	4 server 64bit(40GB)		• C	

Figure 4-3 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image

Create a container image with the following configurations and use the image to create a training job on ModelArts:

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- pytorch-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.

The following uses the Linux x86_64 OS as an example to describe how to obtain the Docker installation package. For more details about how to install Docker, see **official Docker documents**.

```
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh
```

If the **docker images** command is executed, Docker has been installed. In this case, skip this step.

2. Run the following command to check the Docker Engine version: docker version | grep -A 1 Engine

The following information is displayed:

```
Engine:
Version: 18.09.0
```

D NOTE

Use the Docker engine of the preceding version or later to create a custom image.

- 3. Create a folder named **context**. mkdir -p context
- 4. Obtain the **pip.conf** file. In this example, the pip source provided by Huawei Mirrors is used, which is as follows:

```
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120
```

NOTE

In Huawei Mirrors **https://mirrors.huaweicloud.com/home**, search for **pypi** to obtain the pip.conf file.

- 5. Download the following .whl files from https://download.pytorch.org/whl/ torch_stable.html:
 - torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
 - torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
 - torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NOTE

The URL code of the + symbol is %2B. When searching for a file in the above website, replace the + symbol in the file name with %2B.

For example, torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

- 6. Download the Miniconda3-py37_4.12.0-Linux-x86_64.sh installation file (Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh.
- 7. Store the pip source file, torch*.whl file, and Miniconda3 installation file in the **context** folder, which is as follows:

context

```
    Miniconda3-py37_4.12.0-Linux-x86_64.sh
    pip.conf
    torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
    torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
    torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl
```

8. Write the container image Dockerfile.

Create an empty file named **Dockerfile** in the **context** folder and copy the following content to the file:

The host must be connected to the public network for creating a container image.

```
# Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
```

```
# https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
# require Docker Engine >= 17.05
```

builder stage

FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the base container image is **root**. # USER root

Use the PyPI configuration provided by Huawei Mirrors. RUN mkdir -p /root/.pip/ COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the **/tmp** directory in the base container image. COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux # Install Miniconda3 to the **/home/ma-user/miniconda3** directory of the base container image. RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install torch*.whl using the default Miniconda3 Python environment in **/home/ma-user/** miniconda3/bin/pip.

RUN cd /tmp && \

/home/ma-user/miniconda3/bin/pip install --no-cache-dir \ /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \ /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \ /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

Create the final container image. FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

Install vim and cURL in Huawei Mirrors.

RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \ sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \

sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ apt-get update && \ apt-get install -y vim curl && \

apt-get clean && \

mv /etc/apt/sources.list.bak /etc/apt/sources.list

Add user **ma-user** (UID = 1000, GID = 100).

A user group whose GID is 100 of the base container image exists. User **ma-user** can directly use it. RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the **/home/ma-user/miniconda3** directory from the builder stage to the directory with the same name in the current container image.

COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image. # Set PYTHONUNBUFFERED to 1 to avoid log loss. ENV PATH=\$PATH:/home/ma-user/miniconda3/bin \ PYTHONUNBUFFERED=1 # Set the default user and working directory of the container image. USER ma-user WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.

9. Verify that the Dockerfile has been created. The following shows the **context** folder:

```
context

Dockerfile

Miniconda3-py37_4.12.0-Linux-x86_64.sh

pip.conf

torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl

torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl
```

10. Create the container image. Run the following command in the directory where the Dockerfile is stored to build the container image **pytorch:1.8.1-cuda11.1**:

docker build . -t pytorch:1.8.1-cuda11.1

The following log information displayed during image creation indicates that the image has been created.

Successfully tagged pytorch:1.8.1-cuda11.1

Step 5 Uploading an Image to SWR

1. Log in to the SWR console and select the target region.

Figure 4-4 SWR console

SWR	Dashboard ③		Feedback Feedback	este Organization	Pe Generate Login Command
Dashboard	We would much appreciate if you could complete the second compl	ete our questionnaire on Software Repository fo	Container. Your feedback will help us provide a be	tter user experience.	×
My Images Image Resources 🛛 👻	Getting Started				Quick Start Guide
Organization Management Interactive Walkthroughs				Total and the second se	Creating an Organization Uploading an Image Creating an Image Package Adding Permissions
	1 Create Organization	2 Upload Image	3 Create Application	Add Trigger	Adding an Image to Favorites
	Create an organization to which you can upload images and manage them. Create Organization	Upload a local image to the organization or use a public image. Upload Local Image Use	Use CCII to create an application from the image. Use CCE to Create Application	Add triggers in SWR to automatically update the application when the image is updated.	
		Public Image		Add Trigger	

2. Click **Create Organization** in the upper right corner and enter an organization name to create an organization. Customize the organization name. Replace the organization name **deep-learning** in subsequent commands with the actual organization name.

Figure 4-5 Creating an organization

Create Organization

 Each organization name must be globally unique. You can create 5 organizations. For centralized management of images, limit each organization to one company, department, or individual. Examples Company or department: cloud-hangzhou or cloud-develop Person: john
Organization Name deep-learning

3. Click **Generate Login Command** in the upper right corner to obtain a login command.

Figure 4-6 Login Command

Cogin Comman	d	×
learn how to obtain a login cor	nmand that has long-term validity.	
docker login -u	8@X	:::В - 6
	יםי	

- 4. Log in to the local environment as the **root** user and enter the login command.
- 5. Upload the image to SWR.
 - a. Run the following command to tag the uploaded image: #Replace the region and domain information with the actual values, and replace the organization name **deep-learning** with your custom value. sudo docker tag pytorch:1.8.1-cuda11.1 swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1cuda11.1
 - b. Run the following command to upload the image: #Replace the region and domain information with the actual values, and replace the organization name **deep-learning** with your custom value. sudo docker push swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-cuda11.1
- 6. After the image is uploaded, choose **My Images** in navigation pane on the left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts

- Log in to the ModelArts management console and check whether access authorization has been configured for your account. For details, see Configuring Agency Authorization. If you have been authorized using access keys, clear the authorization and configure agency authorization.
- 2. In the navigation pane, choose **Training Management** > **Training Jobs**. The training job list is displayed by default.
- 3. On the **Create Training Job** page, set required parameters and click **Submit**.
 - Created By: Custom algorithms
 - Boot Mode: Custom images
 - Image path: image created in **Step 5 Uploading an Image to SWR**.
 - Code Directory: directory where the boot script file is stored in OBS, for example, obs://test-modelarts/pytorch/demo-code/. The training code is automatically downloaded to the \${MA_JOB_DIR}/demo-code directory of the training container. demo-code (customizable) is the lastlevel directory of the OBS path.
 - Boot Command: /home/ma-user/miniconda3/bin/python \$
 {MA_JOB_DIR}/demo-code/pytorch-verification.py. demo-code
 (customizable) is the last-level directory of the OBS path.
 - Resource Pool: Public resource pools

- **Resource Type**: Select **CPU** or **GPU**.
- **Persistent Log Saving**: enabled
- **Job Log Path**: Set this parameter to the OBS path for storing training logs, for example, **obs://test-modelarts/pytorch/log/**.
- 4. Check the parameters of the training job and click **Submit**.
- 5. Wait until the training job is completed.

After a training job is created, the operations such as container image downloading, code directory downloading, and boot command execution are automatically performed in the backend. Generally, the training duration ranges from dozens of minutes to several hours, depending on the training procedure and selected resources. After the training job is executed, the log similar to the following is output.

Figure 4-7 Run logs of training jobs with GPU specifications

```
1 tensor([[-0.4181, 0.8150, -0.2581],
 2
           [-0.6062, 0.5347, 0.1890],
 3
           [ 0.5751, 1.2730, -0.3907],
 4
           [ 0.4812, -0.4064, -0.2753],
           [ 1.0377, -1.1248, 1.2977]])
 5
 6 tensor([[-0.7440, -0.8577, -0.2340],
 7
           [ 0.9569, 0.5516, -1.3350],
 8
           [-1.2878, -0.2791, 0.3486],
           [-1.0997, 0.7627, -0.3188],
 9
           [-1.0865, -1.2626, -0.5900]], device='cuda:0')
10
11
```

4.2.2 Example: Creating a Custom Image for Training (MPI + CPU/GPU)

This section describes how to create an image and use the image for training on the ModelArts platform. The AI engine used for training is MPI, and the resources are CPUs or GPUs.

NOTE

This section applies only to training jobs of the new version.

Scenarios

In this example, create a custom image by writing a Dockerfile on a Linux x86_64 host running the Ubuntu 18.04 operating system.

Objective: Build and install container images of the following software and use the images and CPUs/GPUs for training on ModelArts.

- ubuntu-18.04
- cuda-11.1
- python-3.7.13

openmpi-3.0.0

Procedure

Before using a custom image to create a training job, get familiar with Docker and have development experience. The following is the detailed procedure:

- 1. **Prerequisites**
- 2. Step 1 Creating an OBS Bucket and Folder
- 3. Step 2 Preparing Script Files and Uploading Them to OBS
- 4. Step 3 Preparing an Image Server
- Step 4 Creating a Custom Image 5.
- 6. Step 5 Uploading an Image to SWR
- 7. Step 6 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei ID and enabled Huawei Cloud services, and the account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder

Table 4-2 Folder to create

Create a bucket and folders in OBS for storing the sample dataset and training code. Table 4-2 lists the folders to be created. Replace the bucket name and folder names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Name	Descripti

Name	Description
obs://test-modelarts/mpi/demo- code/	Stores the MPI boot script and training script file.
obs://test-modelarts/mpi/log/	Stores training log files.

Step 2 Preparing Script Files and Uploading Them to OBS

Prepare the MPI boot script **run mpi.sh** and training script **mpi-verification.py** and upload them to the obs://test-modelarts/mpi/demo-code/ folder of the OBS bucket.

The content of the MPI boot script **run_mpi.sh** is as follows:

#!/bin/bash MY_HOME=/home/ma-user

MY_SSHD_PORT=\${MY_SSHD_PORT:-"38888"}

MY_TASK_INDEX=\${MA_TASK_INDEX:-\${VC_TASK_INDEX:-\${VK_TASK_INDEX}}}

```
MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}
MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"
if [ -z ${MY_MPI_SLOTS} ]; then
  echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
  MY_MPI_SLOTS="1"
fi
printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"
env | grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
# add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}
sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config
# start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"
# confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}
if [ $MY_TASK_INDEX -eq 0 ]; then
  # generate the hostfile of mpi
  for ((i=0; i<$MA_NUM_HOSTS; i++))
  do
    eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
    echo "[run_mpi] hostname: ${hostname}"
    ip=""
    while [ -z "$ip" ]; do
       ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
       sleep 1
    done
    echo "[run_mpi] resolved ip: ${ip}"
    # test the sshd is up
    while :
    do
       if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then
         break
       fi
       sleep 1
    done
    echo "[run_mpi] the sshd of ip ${ip} is up"
    echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
  done
  printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi
RET_CODE=0
if [ $MY_TASK_INDEX -eq 0 ]; then
  echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")
  np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} ))
  echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-
p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"
  # execute mpirun at worker-0
```

```
# mpirun
  mpirun \
     -np ${np} \
     -hostfile ${MY_HOME}/hostfile \
     -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
     -tune ${MY_MPI_TUNE_FILE} \
     -bind-to none -map-by slot \
     -x NCCL_DEBUG -x NCCL_SOCKET_IFNAME -x NCCL_IB_HCA -x NCCL_IB_TIMEOUT -x
NCCL_IB_GID_INDEX -x NCCL_IB_TC
     -x HOROVOD_MPI_THREADS_DISABLE=1 \
     -x PATH -x LD_LIBRARY_PATH \
     -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
     "$@"
  RET_CODE=$?
  if [ $RET_CODE -ne 0 ]; then
     echo "[run_mpi] exec command failed, exited with $RET_CODE"
  else
     echo "[run_mpi] exec command successfully, exited with $RET_CODE"
  fi
  # stop 1...N worker by killing the sleep proc
  sed -i '1d' ${MY_HOME}/hostfile
  if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then
     echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"
     sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
     printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
     mpirun \
     --hostfile ${MY_HOME}/hostfile \
     --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
     -x PATH -x LD_LIBRARY_PATH \
     pkill sleep \
     > /dev/null 2>&1
  fi
  echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
  echo "[run_mpi] the training log is in worker-0"
  sleep 365d
  echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi
exit $RET_CODE
```

NOTE

The script **run_mpi.sh** uses LF line endings. If CRLF line endings are used, executing the training job will fail, and the error "\$'\r': command not found" will be displayed in logs.

 The content of the training script mpi-verification.py is as follows: import os import socket

```
if __name__ == '__main__':
```

print(socket.gethostname())

```
# https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables
print('OMPI_COMM_WORLD_SIZE: ' + os.environ['OMPI_COMM_WORLD_SIZE'])
print('OMPI_COMM_WORLD_RANK: ' + os.environ['OMPI_COMM_WORLD_RANK'])
print('OMPI_COMM_WORLD_LOCAL_RANK: ' + os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
```

Step 3 Preparing an Image Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC will do.

For details about how to purchase an ECS, see **Purchasing and Logging In to a Linux ECS**. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-8 Creating an ECS using a public image (x86)

CPU Architecture	x86 Kunpe	ng				
Specifications	Latest generation	▼ vCPUs 4v	CPUs	✓ Memory	4GiB	
	Flavor Name		vCPUs JΞ	Mem	ory 1 ≣	
	t6.xlarge.1		4 vCPUs	4 GiE	3	
	Selected specifications	General comput	ing-basic t6.xlarge.1 Is of a T6 ECS, choose	4 vCPUs 4 GiB More > Manage Credits.		
Image	Public image	Private image	Shared image	Marketplace image		
	d Ubuntu	▼ Ubuntu 18.0	4 server 64bit(40GB)		•	С

Step 4 Creating a Custom Image

Objective: Build and install container images of the following software and use the ModelArts training service to run the images.

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- openmpi-3.0.0

The following describes how to create a custom image by writing a Dockerfile.

1. Install Docker.

The following uses the Linux x86_64 OS as an example to describe how to obtain a Docker installation package. For more details, see **Docker official documents**. Run the following commands to install Docker:

curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh

If the **docker images** command is executed, Docker has been installed. In this case, skip this step.

2. Check the Docker engine version. Run the following command: docker version | grep -A 1 Engine

The following information is displayed: Engine: Version: 18.09.0

NOTE

You are advised to use Docker Engine of this version or later to create a custom image.

- 3. Create a folder named **context**. mkdir -p context
- 4. Download the Miniconda3 installation file.

Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh.

5. Download the openmpi 3.0.0 installation file.

Download the openmpi 3.0.0 file edited using Horovod v0.22.1 from https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

 Store the Miniconda3 and openmpi 3.0.0 files in the context folder. The following shows the context folder: context

— Miniconda3-py37_4.12.0-Linux-x86_64.sh — openmpi-3.0.0-bin.tar.gz

7. Write the Dockerfile of the container image.

Create an empty file named **Dockerfile** in the **context** folder and write the following content to the file:

The host must be connected to the public network for creating a container image.

Basic container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

```
# https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
# require Docker Engine >= 17.05
# builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder
# The default user of the basic container image is root.
# USER root
# Copy the Miniconda3 (Python 3.7.13) installation files to the /tmp directory of the basic container
image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
# Install Miniconda3 to the /home/ma-user/miniconda3 directory of the basic container image.
# https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3
# Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04
# Install vim, cURL, net-tools, and the SSH tool in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
  sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@q" /etc/apt/sources.list && \
  sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
  echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
  apt-get update && \
  apt-get install -y vim curl net-tools iputils-ping \
  openssh-client openssh-server && \
  ssh -V && \
  mkdir -p /run/sshd && \
  apt-get clean && \
  mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
  rm /etc/apt/apt.conf.d/00skip-verify-peer.conf
# Install the Open MPI 3.0.0 file written using Horovod v0.22.1.
# https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
# https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
  tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
  ldconfig && \
  mpirun --version
```

```
# Add user ma-user (UID = 1000, GID = 100).
# A user group whose GID is 100 of the basic container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user
# Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
# Configure the preset environment variables of the container image.
# Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
  PYTHONUNBUFFERED=1
# Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user
# Configure sshd to support SSH password-free login.
RUN MA HOME=/home/ma-user && \
  # setup sshd dir
  mkdir -p ${MA_HOME}/etc && \
  ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N " -t rsa && \
  mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
  # setup sshd config (listen at {{MY_SSHD_PORT}} port)
  echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
  # generate ssh key
  ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P " && \
  cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
  # disable ssh host key checking for all hosts
  echo "Host *\n\
StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config
```

For details about how to write a Dockerfile, see **Docker official documents**.

8. Verify that the Dockerfile has been created. The following shows the **context** folder:

```
context

— Dockerfile

— Miniconda3-py37_4.12.0-Linux-x86_64.sh

— openmpi-3.0.0-bin.tar.gz
```

9. Create the container image. Run the following command in the directory where the Dockerfile is stored to build the container image **mpi:3.0.0-cuda11.1**:

docker build . -t mpi:3.0.0-cuda11.1

The following log information displayed during image creation indicates that the image has been created. naming to docker.io/library/mpi:3.0.0-cuda11.1

Step 5 Uploading an Image to SWR

1. Log in to the SWR console and select the target region.

Figure 4-9 SWR console

SWR	Dashboard ③		S Feedback +0	Create Organization	Pe Generate Login Command
Dashboard	We would much appreciate if you could complete the second compl	ete our questionnaire on Software Repository fo	or Container. Your feedback will help us provide a b	better user experience.	>
My Images Image Resources +	Getting Started				Quick Start Guide
Organization Management Interactive Walkthroughs				and the second second	Creating an Organization Uploading an Image Creating an Image Paokage Adding Permissions
	1 Create Organization	2 Upload Image	3 Create Application	4 Add Trigger	Adding an Image to Favorites
	Create an organization to which you can upload images and manage them. Create Organization	Upload a local image to the organization or use a public image. Upload Local Image Use	Use CCE to create an application from the image. Use CCE to Create Application	Add triggens in SWR to automatically update the application when the image is updated.	

2. Click **Create Organization** in the upper right corner and enter an organization name to create an organization. Customize the organization name. Replace the organization name **deep-learning** in subsequent commands with the actual organization name.

Figure 4-10 Creating an organization

Create Organization

 Each organization You can create 5 o For centralized ma department, or indiv Examples Company or de Person: john 	name must be globally unique. rganizations. nagement of images, limit each organization to one company, idual. partment: cloud-hangzhou or cloud-develop	
Organization Name	deep-learning	

3. Click **Generate Login Command** in the upper right corner to obtain a login command.

Figure 4-11 Login Command

Cogin Comman	d	×
learn how to obtain a login co	mmand that has long-term validity.	
docker login -u	8@X	с
	יםי	

Valid Until: Sep 08, 2022 10:43:52 GMT+08:00

- 4. Log in to the local environment as the **root** user and enter the login command.
- 5. Upload the image to SWR.
 - a. Run the following command to tag the uploaded image: #Replace the region and domain information with the actual values, and replace the organization name **deep-learning** with your custom value. sudo docker tag mpi:3.0.0-cuda11.1 swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0cuda11.1

- b. Run the following command to upload the image: #Replace the region and domain information with the actual values, and replace the organization name **deep-learning** with your custom value. sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1
- 6. After the image is uploaded, choose **My Images** on the left navigation pane of the SWR console to view the uploaded custom images.

swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1 is the SWR URL of the custom image.

Step 6 Creating a Training Job on ModelArts

- Log in to the ModelArts management console, check whether access authorization has been configured for your account. For details, see Configuring Agency Authorization. If you have been authorized using access keys, clear the authorization and configure agency authorization.
- 2. Log in to the ModelArts management console. In the left navigation pane, choose **Training Management** > **Training Jobs (New)**.
- 3. On the **Create Training Job** page, configure parameters and click **Submit**.
 - Created By: Custom algorithms
 - Boot Mode: Custom images
 - Image path: swr.cn-north-4.myhuaweicloud.com/deep-learning/ mpi:3.0.0-cuda11.1
 - Code Directory: OBS path to the boot script, for example, obs://testmodelarts/mpi/demo-code/.
 - Boot Command: bash \${MA_JOB_DIR}/demo-code/run_mpi.sh python \${MA_JOB_DIR}/demo-code/mpi-verification.py
 - Environment Variable: Add MY_SSHD_PORT = 38888.
 - Resource Pool: Public resource pools
 - **Resource Type**: Select **GPU**.
 - Compute Nodes: Enter 1 or 2.
 - Persistent Log Saving: enabled
 - **Job Log Path**: Set this parameter to the OBS path for storing training logs, for example, **obs://test-modelarts/mpi/log/**.
- 4. Check the parameters of the training job and click **Submit**.
- 5. Wait until the training job is completed.

After a training job is created, the operations such as container image downloading, code directory downloading, and boot command execution are automatically performed in the backend. Generally, the training duration ranges from dozens of minutes to several hours, depending on the training procedure and selected resources. After the training job is executed, the log similar to the following is output.

Figure 4-12 Run logs of worker-0 with one compute node and GPU specifications

MY_HOME	: /home/	/ma-user			
MY_SSHD_	PORT: 3	8888			
MY_MPI_E	BTL_TCP_	IF: eth0,bond0			
MY_TASK_	INDEX:	0			
MY_MPI_S	SLOTS: 1	L			
tcp	0	0 0.0.0.38888	0.0.0:*	LISTEN	60/sshd
tcp6	0	0 :::38888	:::*	LISTEN	60/sshd
172.16.0	0.122 sl	ots=1			
modelart	ts-job-8	3cf8a682-21cb-4d73-9bb3-7	789cecdc458b-worker-0		
OMPI_COM	M_WORLD	_SIZE: 1			
OMPI_COM	M_WORLD	_RANK: 0			
OMPI_COM	M_WORLD	_LOCAL_RANK: 0			

Set **Compute Nodes** to **2** and run the training job. **Figure 4-13** and **Figure 4-14** show the log information.

Figure 4-13 Run logs of worker-0 with two compute nodes and GPU specifications

MY_HOME: /	home/ma	-user			
MY_SSHD_PC	RT: 388	88			
MY_MPI_BTL	_TCP_IF	: eth0,bond0			
MY_TASK_IN	DEX: 0				
MY_MPI_SLC	TS: 1				
tcp	0	0 0.0.0.0:38888	0.0.0:*	LISTEN	61/sshd
tcp6	0	0 :::38888	:::*	LISTEN	61/sshd
172.16.0.3	9 slots	=1			
172.16.0.1	23 slot	5=1			
Warning: P	ermanent	tly added '[172.16.0.123]:	38888' (RSA) to the list	of known hos	sts.
modelarts-	job-317	32752-6857-4e33-96ff-7a28at	Fae26fb-worker-0		
OMPI_COMM_	WORLD_S	IZE: 2			
MPI_COMM_WORLD_RANK: 0					
OMPI_COMM_	WORLD_L	DCAL_RANK: 0			
modelarts-	job-317	32752-6857-4e33-96ff-7a28at	Fae26fb-worker-1		
OMPI_COMM_	WORLD_S	IZE: 2			
OMPI_COMM_	WORLD_R	ANK: 1			
OMPI_COMM_	WORLD_L	DCAL_RANK: 0			

Figure 4-14 Run logs of worker-1 with two compute nodes and GPU specifications

/home/ma	ι-user/m	odelarts/user-job-dir/S	C.e/run_mpi.sh: line 109:	66 Termina	ted	sleep 365d
tcp6	0	0 :::38888	:::*	LISTEN	62/sshd	
tcp	0	0 0.0.0.38888	0.0.0.0:*	LISTEN	62/sshd	
MY_MPI_S	LOTS: 1					
MY_TASK_	INDEX:	1				
MY_MPI_E	TL_TCP_	IF: eth0,bond0				
MY_SSHD_	PORT: 3	8888				
MY_HOME:	/home/	ma-user				

4.2.3 Example: Creating a Custom Image for Training (Horovod-PyTorch and GPUs)

This section describes how to create an image and use it for training on ModelArts. The AI engine used in the image is horovod_0.22.1-pytorch_1.8.1, and the resources used for training are GPUs.

NOTE

This section applies only to training jobs of the new version.

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64 server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to create a CPU- or GPU-powered training job on ModelArts:

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- mlnx ofed-5.4
- pytorch-1.8.1
- horovod-0.22.1

Procedure

Before using a custom image to create a training job, you need to be familiar with Docker and have development experience.

- 1. Prerequisites
- 2. Step 1 Creating an OBS Bucket and Folder
- 3. Step 2 Preparing the Training Script and Uploading It to OBS
- 4. Step 3 Preparing a Server
- 5. Step 4 Creating a Custom Image
- 6. Step 5 Uploading the Image to SWR
- 7. Step 6 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei Cloud account. The account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training code. **Table 4-3** lists the folders to be created. Replace the bucket name and folder names in the example with actual names.

For details about how to create an OBS bucket and folder, see **Creating a Bucket** and **Creating a Folder**.

Ensure that the OBS directory you use and ModelArts are in the same region.

Name	Description
obs://test-modelarts/pytorch/ demo-code/	Stores the training script.

 Table 4-3 Folder to create

Name	Description
obs://test-modelarts/pytorch/log/	Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS

Obtain training scripts **pytorch_synthetic_benchmark.py** and **run_mpi.sh** and upload them to **obs://test-modelarts/horovod/demo-code/** in the OBS bucket.

pytorch_synthetic_benchmark.py is as follows:

```
import argparse
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import models
import horovod.torch as hvd
import timeit
import numpy as np
# Benchmark settings
parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark',
                      formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
             help='use fp16 compression during allreduce')
parser.add_argument('--model', type=str, default='resnet50',
             help='model to benchmark')
parser.add_argument('--batch-size', type=int, default=32,
             help='input batch size')
parser.add_argument('--num-warmup-batches', type=int, default=10,
             help='number of warm-up batches that don\'t count towards benchmark')
parser.add_argument('--num-batches-per-iter', type=int, default=10,
             help='number of batches per benchmark iteration')
parser.add_argument('--num-iters', type=int, default=10,
             help='number of benchmark iterations')
parser.add_argument('--no-cuda', action='store_true', default=False,
             help='disables CUDA training')
parser.add_argument('--use-adasum', action='store_true', default=False,
             help='use adasum algorithm to do reduction')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
hvd.init()
if args.cuda:
  # Horovod: pin GPU to local rank.
  torch.cuda.set_device(hvd.local_rank())
cudnn.benchmark = True
# Set up standard model.
model = getattr(models, args.model)()
# By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1
if args.cuda:
  # Move model to GPU.
  model.cuda()
```

```
# If using GPU Adasum allreduce, scale learning rate by local_size.
  if args.use_adasum and hvd.nccl_built():
     lr_scaler = hvd.local_size()
optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
                         named_parameters=model.named_parameters(),
                        compression=compression,
                        op=hvd.Adasum if args.use_adasum else hvd.Average)
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Set up fixed fake data
data = torch.randn(args.batch_size, 3, 224, 224)
target = torch.LongTensor(args.batch_size).random_() % 1000
if args.cuda:
  data, target = data.cuda(), target.cuda()
def benchmark_step():
  optimizer.zero_grad()
  output = model(data)
  loss = F.cross_entropy(output, target)
  loss.backward()
  optimizer.step()
def log(s, nl=True):
  if hvd.rank() != 0:
     return
  print(s, end='\n' if nl else ")
log('Model: %s' % args.model)
log('Batch size: %d' % args.batch_size)
device = 'GPU' if args.cuda else 'CPU'
log('Number of %ss: %d' % (device, hvd.size()))
# Warm-up
log('Running warmup...')
timeit.timeit(benchmark_step, number=args.num_warmup_batches)
# Benchmark
log('Running benchmark...')
img_secs = []
for x in range(args.num_iters):
  time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter)
  img_sec = args.batch_size * args.num_batches_per_iter / time
  log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device))
  img_secs.append(img_sec)
# Results
img_sec_mean = np.mean(img_secs)
img_sec_conf = 1.96 * np.std(img_secs)
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf))
log('Total img/sec on %d %s(s): %.1f +-%.1f' %
  (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))
run_mpi.sh is as follows:
```

#!/bin/bash MY_HOME=/home/ma-user

```
MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}
MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}
MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}
MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}
MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"
if [ -z ${MY_MPI_SLOTS} ]; then
  echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
  MY_MPI_SLOTS="1"
fi
printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"
env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY MPI TUNE FILE}
# add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}
sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config
# start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"
# confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}
if [ $MY_TASK_INDEX -eq 0 ]; then
  # generate the hostfile of mpi
  for ((i=0; i<$MA_NUM_HOSTS; i++))
  do
    eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
    echo "[run_mpi] hostname: ${hostname}"
    ip=""
    while [ -z "$ip" ]; do
       ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
       sleep 1
     done
    echo "[run_mpi] resolved ip: ${ip}"
    # test the sshd is up
    while :
    do
       if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then
          break
       fi
       sleep 1
    done
    echo "[run_mpi] the sshd of ip ${ip} is up"
    echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
  done
  printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi
RET_CODE=0
if [ $MY_TASK_INDEX -eq 0 ]; then
  echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")
  np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} ))
```

```
echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"
  # execute mpirun at worker-0
  # mpirun
  mpirun \
     -np ${np} \
     -hostfile ${MY_HOME}/hostfile \
     -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
     -tune ${MY_MPI_TUNE_FILE} \
     -bind-to none -map-by slot \
     -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
     -x HOROVOD_MPI_THREADS_DISABLE=1 \
     -x LD_LIBRARY_PATH \
     -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
     "$@'
  RET_CODE=$?
  if [ $RET_CODE -ne 0 ]; then
     echo "[run_mpi] exec command failed, exited with $RET_CODE"
  else
     echo "[run_mpi] exec command successfully, exited with $RET_CODE"
  fi
  # stop 1...N worker by killing the sleep proc
  sed -i '1d' ${MY_HOME}/hostfile
  if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then
     echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"
     sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
     printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
     mpirun \
     --hostfile ${MY_HOME}/hostfile \
     --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
     --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
     -x PATH -x LD_LIBRARY_PATH \
     pkill sleep \
     > /dev/null 2>&1
  fi
  echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
  echo "[run_mpi] the training log is in worker-0"
  sleep 365d
  echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi
exit $RET_CODE
```

Step 3 Preparing a Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC will do.

For details about how to purchase an ECS, see **Purchasing and Logging In to a Linux ECS**. Select a public image. An Ubuntu 18.04 image is recommended.

CPU Architecture	x86 Kunper	ng 🕜			
Specifications	Latest generation	vCPUs 4	/CPUs	▼ Memory	4GiB
	Flavor Name		vCPUs ↓Ξ	Ме	mory J≘
	t6.xlarge.1		4 vCPUs	4 0	ЗіВ
	Selected specifications	General comput	ing-basic t6.xlarge.1 Is of a T6 ECS, choose	4 vCPUs 4 GiB More > Manage Credit	s.
Image	Public image	Private image	Shared image	Marketplace image	
	😋 Ubuntu	▼ Ubuntu 18.0	4 server 64bit(40GB)		• C

Figure 4-15 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image

Create a container image with the following configurations and use the image to create a training job on ModelArts:

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- mlnx ofed-5.4
- pytorch-1.8.1
- horovod-0.22.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.

The following uses Linux x86_64 as an example to describe how to obtain a Docker installation package. For more details about how to install Docker, see **official Docker documents**. Run the following command to install Docker:

curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh

If the **docker images** command can be executed, Docker has been installed. In this case, skip this step.

2. Check the Docker Engine version. Run the following command: docker version | grep -A 1 Engine

The following information is displayed: Engine: Version: 18.09.0

NOTE

Use the Docker engine of the preceding version or later to create a custom image.

- 3. Create a folder named **context**. mkdir -p context
- Obtain the **pip.conf** file. In this example, the pip source provided by Huawei Mirrors is used, which is as follows: [global]

index-url = https://repo.huaweicloud.com/repository/pypi/simple

trusted-host = repo.huaweicloud.com timeout = 120

NOTE

To obtain **pip.conf**, switch to Huawei Mirrors **https://mirrors.huaweicloud.com/home** and search for **pypi**.

5. Download the source Horovod code file.

Download **horovod-0.22.1.tar.gz** from https://pypi.org/project/horovod/ 0.22.1/#files.

6. Download .whl files.

Download the following .whl files from https://download.pytorch.org/whl/torch_stable.html.

- torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
- torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
- torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NOTE

The URL code of the plus sign (+) is %2B. When searching for files in the preceding websites, replace the plus sign (+) in the file name with %2B, for example, torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

7. Download the Miniconda3 installation file.

Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh.

8. Write the container image Dockerfile.

Create an empty file named **Dockerfile** in the **context** folder and copy the following content to the file:

The server on which the container image is created must access the Internet.

```
# Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
```

```
# https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
# require Docker Engine >= 17.05
# builder stage
FROM nvidia/cuda:11.1.1-devel-ubuntu18.04 AS builder
# Install CMake obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
  sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
  sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
  echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
  apt-get update && \
  apt-get install -y build-essential cmake g++-7 && \
  apt-get clean && \
  mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
  rm /etc/apt/apt.conf.d/00skip-verify-peer.conf
# The default user of the base container image is root.
# USER root
# Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf
# Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
```

COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp COPY openmpi-3.0.0-bin.tar.gz /tmp COPY horovod-0.22.1.tar.gz /tmp # https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux # Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image. RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3 # Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1. # https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile # https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz RUN cd /usr/local && \ tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \ ldconfig && \ mpirun --version # Environment variables required for building Horovod with PyTorch ENV HOROVOD_NCCL_INCLUDE=/usr/include \ HOROVOD NCCL LIB=/usr/lib/x86 64-linux-gnu \ HOROVOD_MPICXX_SHOW="/usr/local/openmpi/bin/mpicxx -show" \ HOROVOD_GPU_OPERATIONS=NCCL \ HOROVOD_WITH_PYTORCH=1 # Install the .whl files using default Miniconda3 Python environment /home/ma-user/ miniconda3/bin/pip. RUN cd /tmp && \ /home/ma-user/miniconda3/bin/pip install --no-cache-dir \ /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \ /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \ /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl # Build and install horovod-0.22.1.tar.gz using default Miniconda3 Python environment /home/mauser/miniconda3/bin/pip. RUN cd /tmp && \ /home/ma-user/miniconda3/bin/pip install --no-cache-dir \ /tmp/horovod-0.22.1.tar.gz # Create the container image. FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp # Install the vim, cURL, net-tools, MLNX OFED, and SSH tools obtained from Huawei Mirrors. RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \ sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \ apt-get update && \ apt-get install -y vim curl net-tools iputils-ping libfile-find-rule-perl-perl \ openssh-client openssh-server && \ ssh -V && \ mkdir -p /run/sshd && \ # mlnx ofed apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1 libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotoolsdev flex chrpath libltdl-dev && \ cd /tmp && \ tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \ MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic -without-fw-update -q && \ cd - && \ rm -rf /tmp/* && \ apt-get clean && \ mv /etc/apt/sources.list.bak /etc/apt/sources.list && \ rm /etc/apt/apt.conf.d/00skip-verify-peer.conf # Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1. # https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile

```
# https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
  tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
  ldconfig && \
  mpirun --version
# Add user ma-user (UID = 1000, GID = 100).
# A user group whose GID is 100 exists in the basic container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user
# Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
# Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user
# Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
  # setup sshd dir
  mkdir -p ${MA_HOME}/etc && \
  ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N " -t rsa && \
  mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
  # setup sshd config (listen at {{MY_SSHD_PORT}} port)
  echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
  # generate ssh key
  ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
  cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
  # disable ssh host key checking for all hosts
  echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config
# Configure the preset environment variables of the container image.
# Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
```

```
PYTHONUNBUFFERED=1
```

For details about how to write a Dockerfile, see official Docker documents.

9. Download the MLNX_OFED installation package.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/ mlnx_ofed/, in the **Download** tab, select a proper installation package from **Current Versions** or **Archive Versions**. In this example, choose **Archive Versions**, set **Version** to **5.4-3.5.8.0-LTS**, **OS Distribution** to **Ubuntu**, **OS Distribution Version** to **Ubuntu 18.04**, **Architecture** to **x86_64**, and download the **MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz** installation package.

10. Download openmpi-3.0.0-bin.tar.gz.

Download **openmpi-3.0.0-bin.tar.gz** from https://github.com/horovod/ horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

11. Store the pip source file, .whl files, and Miniconda3 installation file in the **context** folder, which is as follows:

context — Dockerfile

MLNX OFED LINUX-5.4-3.5.8.0-ubuntu18.04-x86 64.tgz

[—] Miniconda3-py37_4.12.0-Linux-x86_64.sh

[—] horovod-0.22.1.tar.gz

openmpi-3.0.0-bin.tar.gz
 pip.conf
 torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
 torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
 torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

12. Create the container image. Run the following command in the directory where the Dockerfile is stored to build the container image **horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1**: docker build .-t horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

The following log shows that the image has been created. Successfully tagged horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

Step 5 Uploading the Image to SWR

1. Log in to the SWR console and select the target region.

Figure 4-16 SWR console

2. Click **Create Organization** in the upper right corner and enter an organization name to create an organization. Customize the organization name. Replace the organization name **deep-learning** in subsequent commands with the actual organization name.

Figure 4-17 Creating an organization

Create Organization

 Each organization You can create 5 of For centralized management, or individe the examples Company or de Person: john 	name must be globally unique. Inganizations. Inagement of images, limit each organization to one company, idual. Ipartment: cloud-hangzhou or cloud-develop
Organization Name	deep-learning

3. Click **Generate Login Command** in the upper right corner to obtain a login command.

Figure 4-18 Login Command

Login Comman	d	
learn how to obtain a login co	mmand that has long-term validity.	
docker login -u	8@X	зв 6
P .	יםי	
Valid Until: Sen 08, 202	2 10:43:52 GMT+08:00	

- 4. Log in to the local environment as the **root** user and enter the login command.
- 5. Upload the image to SWR.
 - a. Tag the uploaded image.
 # Replace the region, domain, as well as organization name deep-learning with the actual values.
 sudo docker tag horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1 swr.{region-id}.{domain}/deep-learning/horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1
 b. Run the following command to upload the image:
 - But the following command to upload the image:
 # Replace the region, domain, as well as organization name deep-learning with the actual values.
 sudo docker push swr.{region-id}.{domain}/deep-learning/horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1
- 6. After the image is uploaded, choose **My Images** in navigation pane on the left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts

- Log in to the ModelArts management console, check whether access authorization has been configured for your account. For details, see Configuring Agency Authorization. If you have been authorized using access keys, clear the authorization and configure agency authorization.
- 2. In the navigation pane, choose **Training Management** > **Training Jobs**. The training job list is displayed by default.
- 3. Click **Create Training Job**. On the page that is displayed, configure parameters and click **Next**.
 - Created By: Custom algorithms
 - Boot Mode: Custom images
 - Image path: image created in **Step 5 Uploading the Image to SWR**.
 - Code Directory: directory where the boot script file is stored in OBS, for example, obs://test-modelarts/pytorch/demo-code/. The training code is automatically downloaded to the \${MA_JOB_DIR}/demo-code directory of the training container. demo-code (customizable) is the lastlevel directory of the OBS path.
 - Boot Command: bash \${MA_JOB_DIR}/demo-code/run_mpi.sh python \${MA_JOB_DIR}/demo-code/pytorch_synthetic_benchmark.py. democode (customizable) is the last-level directory of the OBS path.
 - **Environment Variable**: Click **Add Environment Variable** and add the environment variable **MY_SSHD_PORT=38888**.
 - **Resource Pool**: Select **Public resource pools**.

- **Resource Type**: Select **GPU**.
- **Compute Nodes**: 1 or 2
- **Persistent Log Saving**: enabled
- Job Log Path: OBS path to stored training logs, for example, obs://testmodelarts/pytorch/log/
- 4. Confirm the configurations of the training job and click **Submit**.
- 5. Wait until the training job is created.

After you submit the job creation request, the system will automatically perform operations on the backend, such as downloading the container image and code directory and running the boot command. A training job requires a certain period of time for running. The duration ranges from dozens of minutes to several hours, varying depending on the service logic and selected resources. After the training job is executed, the log similar to the following is output.

Figure 4-19 Run logs of training jobs with GPU specifications (one compute node)

58 Iter #0: 342.4 img/sec per GPU 59 Iter #1: 342.7 img/sec per GPU 60 Iter #2: 342.8 img/sec per GPU 61 Iter #3: 342.5 img/sec per GPU 62 Iter #4: 342.9 img/sec per GPU 63 Iter #5: 342.8 img/sec per GPU 64 Iter #6: 342.9 img/sec per GPU 65 Iter #7: 343.0 img/sec per GPU 66 Iter #8: 342.6 img/sec per GPU 67 Iter #9: 342.7 img/sec per GPU 68 Img/sec per GPU: 342.7 +-0.3 69 Total img/sec on 1 GPU(s): 342.7 +-0.3 **Figure 4-20** Run logs of training jobs with GPU specifications (two compute nodes)

```
84 Iter #0: 115.1 img/sec per GPU
85 Iter #1: 123.5 img/sec per GPU
86 Iter #2: 115.7 img/sec per GPU
87 Iter #3: 117.4 img/sec per GPU
88 Iter #4: 120.6 img/sec per GPU
89 Iter #5: 126.9 img/sec per GPU
90 Iter #6: 119.4 img/sec per GPU
91 Iter #7: 118.4 img/sec per GPU
92 Iter #8: 122.0 img/sec per GPU
93 Iter #9: 118.2 img/sec per GPU
94 Img/sec per GPU: 119.7 +-6.8
95 Total img/sec on 2 GPU(s): 239.4 +-13.5
```

4.2.4 Example: Creating a Custom Image for Training (MindSpore and GPUs)

This section describes how to create an image and use it for training on ModelArts. The AI engine used in the image is MindSpore, and the resources used for training are GPUs.

NOTE

This section applies only to training jobs of the new version.

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64 server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to create a GPU-powered training job on ModelArts:

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- mlnx ofed-5.4
- mindspore gpu-1.8.1

Procedure

Before using a custom image to create a training job, you need to be familiar with Docker and have development experience.

- Prerequisites
- Step 1 Creating an OBS Bucket and Folder

- Step 2 Creating a Dataset and Uploading It to OBS
- Step 3 Preparing the Training Script and Uploading It to OBS
- Step 4 Preparing a Server
- Step 5 Creating a Custom Image
- Step 6 Uploading the Image to SWR
- Step 7 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei Cloud account. The account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training code. **Table 4-4** lists the folders to be created. Replace the bucket name and folder names in the example with actual names.

For details, see Creating a Bucket and Creating a Folder.

Ensure that the OBS and ModelArts are in the same region.

Folder	Description
obs://test-modelarts/mindspore- gpu/resnet/	Stores the training script.
obs://test-modelarts/mindspore- gpu/cifar-10-batches-bin/	Stores dataset files.
obs://test-modelarts/mindspore- gpu/output/	Stores training output files.
obs://test-modelarts/mindspore- gpu/log/	Store training log files.

 Table 4-4 Required OBS folders

Step 2 Creating a Dataset and Uploading It to OBS

Go to http://www.cs.toronto.edu/~kriz/cifar.html, download the CIFAR-10 binary version (suitable for C programs) package, decompress it, and upload the decompressed data to the obs://test-modelarts/mindspore-gpu/cifar-10-batches-bin/ directory in the OBS bucket.

Step 3 Preparing the Training Script and Uploading It to OBS

Obtain the ResNet file and script **run_mpi.sh** and upload them to **obs://test-modelarts/mindspore-gpu/resnet/** in the OBS bucket.

Download the ResNet file from https://gitee.com/mindspore/models/tree/r1.8/ official/cv/resnet.

run_mpi.sh is as follows:

```
#!/bin/bash
MY_HOME=/home/ma-user
```

MY_SSHD_PORT=\${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=\${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=\${MA_TASK_INDEX:-\${VC_TASK_INDEX:-\${VK_TASK_INDEX}}}

```
MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}
```

MY_MPI_TUNE_FILE="\${MY_HOME}/env_for_user_process"

```
if [ -z ${MY_MPI_SLOTS} ]; then
echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
MY_MPI_SLOTS="1"
fi
```

```
printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"
```

```
env | grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
# add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}
```

```
sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config
```

```
# start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"
```

```
# confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}
```

```
if [ $MY_TASK_INDEX -eq 0 ]; then
    # generate the hostfile of mpi
    for ((i=0; i<$MA_NUM_HOSTS; i++))
    do
        eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
        echo "[run_mpi] hostname: ${hostname}"
        ip=""
        while [ -z "$ip" ]; do
            ip=$(ping -c 1 ${hostname}| grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
            sleep 1
        done
        echo "[run_mpi] resolved ip: ${ip}"
        # test the sshd is up
        while :</pre>
```

```
do
    if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then
        break
    fi
    sleep 1
```

```
done
```

echo "[run_mpi] the sshd of ip \${ip} is up"

```
echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile done
```

printf "[run_mpi] hostfile:\n`cat \${MY_HOME}/hostfile`\n"

```
RET CODE=0
```

fi

```
if [ $MY_TASK_INDEX -eq 0 ]; then
```
```
echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")
  np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} ))
  echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"
  # execute mpirun at worker-0
  # mpirun
  mpirun \
     -np ${np} \
    -hostfile ${MY_HOME}/hostfile \
    -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
     -tune ${MY_MPI_TUNE_FILE} \
    -bind-to none -map-by slot
     -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
     -x HOROVOD_MPI_THREADS_DISABLE=1 \
     -x LD LIBRARY PATH \
     -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
     "$@"
  RET_CODE=$?
  if [ $RET_CODE -ne 0 ]; then
    echo "[run_mpi] exec command failed, exited with $RET_CODE"
  else
     echo "[run_mpi] exec command successfully, exited with $RET_CODE"
  fi
  # stop 1...N worker by killing the sleep proc
  sed -i '1d' ${MY_HOME}/hostfile
  if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then
    echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"
    sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
     printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
    mpirun \
     --hostfile ${MY_HOME}/hostfile \
    --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
     --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
     -x PATH -x LD_LIBRARY_PATH \
    pkill sleep \
     > /dev/null 2>&1
  fi
  echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
  echo "[run_mpi] the training log is in worker-0"
  sleep 365d
  echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi
exit $RET_CODE
```

The **obs://test-modelarts/mindspore-gpu/resnet/** folder contains files **resnet** and **run_mpi.sh**.

Step 4 Preparing a Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC will do.

For details about how to purchase an ECS, see **Purchasing and Logging In to a Linux ECS**. Select a public image. An Ubuntu 18.04 image is recommended.

CPU Architecture	x86 Kunpe	ng 🕜			
Specifications	Latest generation	vCPUs 4	vCPUs	▼ Memory	4GiB
	Flavor Name		vCPUs JΞ	Me	mory ↓≡
	t6.xlarge.1		4 vCPUs	4 0	BiB
	Selected specifications	General compu To view the cred	ting-basic t6.xlarge.1 its of a T6 ECS, choose	4 vCPUs 4 GiB More > Manage Credit	S.
Image	Public image	Private image	Shared image	Marketplace image	
	😋 Ubuntu	▼ Ubuntu 18.0	04 server 64bit(40GB)		• C

Figure 4-21 Creating an ECS using a public image (x86)

Step 5 Creating a Custom Image

Create a container image with the following configurations and use the image to create a training job on ModelArts:

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- mlnx ofed-5.4
- mindspore gpu-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.

The following uses Linux x86_64 as an example to describe how to obtain a Docker installation package. For more details about how to install Docker, see **official Docker documents**. Run the following command to install Docker:

curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh

If the **docker images** command can be executed, Docker has been installed. In this case, skip this step.

2. Check the Docker Engine version. Run the following command: docker version | grep -A 1 Engine

The following information is displayed: Engine: Version: 18.09.0

NOTE

Use the Docker engine of the preceding version or later to create a custom image.

- 3. Create a folder named **context**. mkdir -p context
- 4. Obtain the **pip.conf** file. In this example, the pip source provided by Huawei Mirrors is used, which is as follows: [global] index-url = https://repo.huaweicloud.com/repository/pypi/simple trusted-host = repo.huaweicloud.com timeout = 120

NOTE

To obtain **pip.conf**, switch to Huawei Mirrors **https://mirrors.huaweicloud.com/home** and search for **pypi**.

- Download mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl from https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/ MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37mlinux_x86_64.whl.
- 6. Download the Miniconda3 installation file.

Download **Miniconda3-py37_4.12.0-Linux-x86_64.sh** from https:// repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh.

7. Write the container image Dockerfile.

Create an empty file named **Dockerfile** in the **context** folder and copy the following content to the file:

The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#

builder stage

FROM nvidia/cuda:11.1.1-devel-ubuntu18.04 AS builder

The default user of the base container image is root.# USER root

Use the PyPI configuration obtained from Huawei Mirrors. RUN mkdir -p /root/.pip/ COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the **/tmp** directory in the base container image. COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp COPY mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the **/home/ma-user/miniconda3** directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the whl file using default Miniconda3 Python environment /home/ma-user/miniconda3/bin/ pip.

RUN cd /tmp && \ /home/ma-user/miniconda3/bin/pip install --no-cache-dir \ /tmp/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl \ easydict PyYAML

Create the container image. FROM nvidia/cuda:11.1.1-cudnn8-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, MLNX_OFED, and SSH tools obtained from Huawei Mirrors. RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \

sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
apt-get update && \
apt-get install -y vim curl net-tools iputils-ping libfile-find-rule-perl-perl \
openssh-client openssh-server && \
ssh -V && \
mkdir -p /run/sshd && \
mlnx ofed
apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-

```
dev flex chrpath libltdl-dev && \
  cd /tmp && \
  tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
  MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
  cd - && \
  rm -rf /tmp/* && \
  apt-get clean && \
  mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
  rm /etc/apt/apt.conf.d/00skip-verify-peer.conf
# Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
# https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
# https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
  tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
  ldconfig && \
  mpirun --version
# Add user ma-user (UID = 1000, GID = 100).
# A user group whose GID is 100 exists in the basic container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user
# Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
# Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user
# Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
  # setup sshd dir
  mkdir -p ${MA_HOME}/etc && \
  ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N " -t rsa && \
  mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
  # setup sshd config (listen at {{MY_SSHD_PORT}} port)
  echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
  # generate ssh key
  ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P " && \
  cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
  # disable ssh host key checking for all hosts
  echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config
# Configure the preset environment variables of the container image.
# Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
  LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH \
  PYTHONUNBUFFERED=1
For details about how to write a Dockerfile, see official Docker documents.
Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.
```

Go to https://network.nvidia.com/products/infiniband-drivers/linux/ mlnx_ofed/, click **Download**, set **Version** to **5.4-3.5.8.0-LTS**, **OSDistributionVersion** to **Ubuntu 18.04**, and **Architecture** to **x86_64**, and download **MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz**.

9. Download openmpi-3.0.0-bin.tar.gz.

8.

Download **openmpi-3.0.0-bin.tar.gz** from https://github.com/horovod/ horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

- 10. Store the Dockerfile and Miniconda3 installation file in the **context** folder, which is as follows:
 - context
 - ----- Dockerfile ------ MLNX OFED LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
 - Miniconda3-py37_4.12.0-Linux-x86_64.sh
 - mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl

 - pip.conf
- 11. Create the container image. Run the following command in the directory where the Dockerfile is stored to build the container image **mindspore:1.8.1-ofed-cuda11.1**:

docker build . -t mindspore:1.8.1-ofed-cuda11.1

The following log shows that the image has been created. Successfully tagged mindspore:1.8.1-ofed-cuda11.1

Step 6 Uploading the Image to SWR

1. Log in to the SWR console and select the target region.

Figure 4-22 SWR console

2. Click **Create Organization** in the upper right corner and enter an organization name to create an organization. Customize the organization name. Replace the organization name **deep-learning** in subsequent commands with the actual organization name.

Figure 4-23 Creating an organization

Create Organization
 Each organization name must be globally unique. You can create 5 organizations. For centralized management of images, limit each organization to one company, department, or individual. Examples Company or department: cloud-hangzhou or cloud-develop Person: john
Organization Name deep-learning

3. Click **Generate Login Command** in the upper right corner to obtain a login command.

Figure 4-24 Login Command

Cogin Comman	d	×
learn how to obtain a login co	mmand that has long-term validity.	
docker login -u	8@X	- ЭВ -
	0	
Valid Until: Sep 08, 202	2 10:43:52 GMT+08:00	

- 4. Log in to the local environment as the **root** user and enter the login command.
- 5. Upload the image to SWR.
 - a. Tag the uploaded image.
 # Replace the region, domain, as well as organization name deep-learning with the actual values.
 sudo docker tag mindspore:1.8.1-ofed-cuda11.1 swr.{region-id}.{domain}/deep-learning/mindspore:1.8.1-ofed-cuda11.1
 b. Run the following command to upload the image:
 - B. Run the following command to upload the image. # Replace the region, domain, as well as organization name **deep-learning** with the actual values. sudo docker push swr.{region-id}.{domain}/deep-learning/mindspore:1.8.1-ofed-cuda11.1
- 6. After the image is uploaded, choose **My Images** in navigation pane on the left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts

- Log in to the ModelArts management console, check whether access authorization has been configured for your account. For details, see Configuring Agency Authorization. If you have been authorized using access keys, clear the authorization and configure agency authorization.
- 2. In the navigation pane, choose **Training Management** > **Training Jobs**. The training job list is displayed by default.
- 3. Click **Create Training Job**. On the page that is displayed, configure parameters and click **Next**.
 - Created By: Custom algorithms
 - Boot Mode: Custom images
 - Image path: image created in **Step 6 Uploading the Image to SWR**.
 - Code Directory: directory where the boot script file is stored in OBS, for example, obs://test-modelarts/mindspore-gpu/resnet/. The training code is automatically downloaded to the \${MA_JOB_DIR}/resnet directory of the training container. resnet (customizable) is the last-level directory of the OBS path.
 - Boot Command: bash \${MA_JOB_DIR}/resnet/run_mpi.sh python \$ {MA_JOB_DIR}/resnet/train.py. resnet (customizable) is the last-level directory of the OBS path.
 - Training Input: Click Add Training Input. Enter data_path for the name, select the OBS path to the target dataset, for example, obs://test-modelarts/mindspore-gpu/cifar-10-batches-bin/, and set Obtained from to Hyperparameters.

- Training Output: Click Add Training Output. Enter output_path for the name, select an OBS path for storing training outputs, for example, obs:// test-modelarts/mindspore-gpu/output/, and set Obtained from to Hyperparameters and Predownload to No.
- **Hyperparameters**: Click **Add Hyperparameter** and add the following hyperparameters:
 - run_distribute=True
 - device_num=1 (Set this parameter based on the number of GPUs in the instance flavors.)
 - device_target=GPU
 - epoch_size=2
- Environment Variable: Click Add Environment Variable and add the environment variable MY_SSHD_PORT=38888.
- **Resource Pool**: Select **Public resource pools**.
- **Resource Type**: Select **GPU**.
- **Compute Nodes**: 1 or 2
- Persistent Log Saving: enabled
- Job Log Path: OBS path to stored training logs, for example, obs://testmodelarts/mindspore-gpu/log/
- 4. Confirm the configurations of the training job and click **Submit**.
- 5. Wait until the training job is created.

After you submit the job creation request, the system will automatically perform operations on the backend, such as downloading the container image and code directory and running the boot command. A training job requires a certain period of time for running. The duration ranges from dozens of minutes to several hours, varying depending on the service logic and selected resources. After the training job is executed, the log similar to the following is output.

Figure 4-25 Run logs of training jobs with GPU specifications (one compute node)

127 epoch: 1 step: 1875, loss is 1.4800076 128 Train epoch time: 369422.027 ms, per step time: 197.025 ms 129 epoch: 2 step: 1875, loss is 1.0306032 130 Train epoch time: 66996.087 ms, per step time: 35.731 ms **Figure 4-26** Run logs of training jobs with GPU specifications (two compute nodes)

187 epoch: 1 step: 937, loss is 1.8482083 188 epoch: 1 step: 937, loss is 1.342748 189 Train epoch time: 488492.170 ms, per step time: 521.336 ms 190 Train epoch time: 488490.528 ms, per step time: 521.335 ms 191 epoch: 2 step: 937, loss is 0.9150252 192 Train epoch time: 180200.654 ms, per step time: 192.317 ms 193 epoch: 2 step: 937, loss is 0.9933052 194 Train epoch time: 180199.969 ms, per step time: 192.316 ms 195 172.16.0.45 slots=1

4.2.5 Example: Creating a Custom Image for Training (TensorFlow and GPUs)

This section describes how to create an image and use it for training on ModelArts. The AI engine used in the image is TensorFlow, and the resources used for training are GPUs.

NOTE

This section applies only to training jobs of the new version.

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64 server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to create a GPU-powered training job on ModelArts:

- ubuntu-18.04
- cuda-11.2
- python-3.7.13
- mlnx ofed-5.4
- tensorflow gpu-2.10.0

Procedure

Before using a custom image to create a training job, you need to be familiar with Docker and have development experience.

- 1. Prerequisites
- 2. Step 1 Creating an OBS Bucket and Folder
- 3. Step 2 Creating a Dataset and Uploading It to OBS
- 4. Step 3 Preparing the Training Script and Uploading It to OBS
- 5. Step 4 Preparing a Server
- 6. Step 5 Creating a Custom Image
- 7. Step 6 Uploading the Image to SWR
- 8. Step 7 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei Cloud account. The account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training code. **Table 4-5** lists the folders to be created. Replace the bucket name and folder names in the example with actual names.

For details, see **Creating a Bucket** and **Creating a Folder**.

Ensure that the OBS and ModelArts are in the same region.

Table 4-5 Required OBS folders

Folder	Description
obs://test-modelarts/tensorflow/ code/	Stores the training script.
obs://test-modelarts/tensorflow/ data/	Stores dataset files.
obs://test-modelarts/ tensorflow/log/	Store training log files.

Step 2 Creating a Dataset and Uploading It to OBS

Download **mnist.npz** from https://storage.googleapis.com/tensorflow/tf-kerasdatasets/mnist.npz, and upload it to obs://test-modelarts/tensorflow/data/ in the OBS bucket.

Step 3 Preparing the Training Script and Uploading It to OBS

Obtain the training script **mnist.py** and upload it to **obs://test-modelarts/ tensorflow/code/** in the OBS bucket.

mnist.py is as follows:

import argparse import tensorflow as tf

parser = argparse.ArgumentParser(description='TensorFlow quick start')
parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)

])

```
model.fit(x_train, y_train, epochs=5)
```

Step 4 Preparing a Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC will do.

For details about how to purchase an ECS, see **Purchasing and Logging In to a Linux ECS**. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-27 Creating an ECS using a public image (x86)

CPU Architecture	x86 Kunpe	eng			
Specifications	Latest generation	▼ vCPUs	4vCPUs	▼ Memory 4G	iB
	Flavor Name		vCPUs ↓Ξ	Memory	/ 1≡
	• t6.xlarge.1		4 vCPUs	4 GiB	
	Selected specifications	General com To view the ci	puting-basic t6.xlarge.1	1 4 vCPUs 4 GiB e More > Manage Credits.	
Image	Public image	Private image	Shared image	Marketplace image	
	🚭 Ubuntu	▼ Ubuntu	18.04 server 64bit(40GB)		• C

Step 5 Creating a Custom Image

Create a container image with the following configurations and use the image to create a training job on ModelArts:

- ubuntu-18.04
- cuda-11.1
- python-3.7.13
- mlnx ofed-5.4
- mindspore gpu-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.

The following uses Linux x86_64 as an example to describe how to obtain a Docker installation package. For more details about how to install Docker, see **official Docker documents**. Run the following command to install Docker: curl -fsSL get.docker.com -o get-docker.sh

sh get-docker.sh

If the **docker images** command can be executed, Docker has been installed. In this case, skip this step. 2. Check the Docker Engine version. Run the following command: docker version | grep -A 1 Engine

The following information is displayed: Engine: Version: 18.09.0

Use the Docker engine of the preceding version or later to create a custom image.

- 3. Create a folder named **context**. mkdir -p context
- 4. Obtain the **pip.conf** file. In this example, the pip source provided by Huawei Mirrors is used, which is as follows:

```
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120
```

To obtain **pip.conf**, switch to Huawei Mirrors **https://mirrors.huaweicloud.com/home** and search for **pypi**.

 Download tensorflow_gpu-2.10.0-cp37-cp37mmanylinux_2_17_x86_64.manylinux2014_x86_64.whl.

Download tensorflow_gpu-2.10.0-cp37-cp37mmanylinux_2_17_x86_64.manylinux2014_x86_64.whl from https://pypi.org/ project/tensorflow-gpu/2.10.0/#files.

6. Download the Miniconda3 installation file.

Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh.

7. Write the container image Dockerfile.

Create an empty file named **Dockerfile** in the **context** folder and copy the following content to the file:

The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05

builder stage

FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04 AS builder

The default user of the base container image is **root**. # USER root

Use the PyPI configuration obtained from Huawei Mirrors. RUN mkdir -p /root/.pip/ COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the **/tmp** directory in the base container image. COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp COPY tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux # Install Miniconda3 in the **/home/ma-user/miniconda3** directory of the base container image. RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the TensorFlow .whl file using default Miniconda3 Python environment /home/ma-user/

miniconda3/bin/pip. RUN cd /tmp && \ /home/ma-user/miniconda3/bin/pip install --no-cache-dir \ /tmp/tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl RUN cd /tmp && \ /home/ma-user/miniconda3/bin/pip install --no-cache-dir keras==2.10.0 # Create the container image. FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04 COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tqz /tmp # Install the vim, cURL, net-tools, and MLNX_OFED tools obtained from Huawei Mirrors. RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \ sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \ apt-get update && \ apt-get install -y vim curl net-tools iputils-ping && \ # mlnx ofed apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1 libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotoolsdev flex chrpath libltdl-dev && \ cd /tmp && \ tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \ MLNX OFED LINUX-5.4-3.5.8.0-ubuntu18.04-x86 64/mlnxofedinstall --user-space-only --basic -without-fw-update -q && \ cd - && \ rm -rf /tmp/* && \ apt-get clean && \ mv /etc/apt/sources.list.bak /etc/apt/sources.list && \ rm /etc/apt/apt.conf.d/00skip-verify-peer.conf # Add user ma-user (UID = 1000, GID = 100). # A user group whose GID is 100 exists in the base container image. User ma-user can directly run the following command: RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user # Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the same name in the current container image. COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3 # Configure the default user and working directory of the container image. USER ma-user WORKDIR /home/ma-user # Configure the preset environment variables of the container image. # Set PYTHONUNBUFFERED to 1 to prevent log loss. ENV PATH=/home/ma-user/miniconda3/bin:\$PATH \ LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:\$LD_LIBRARY_PATH \ **PYTHONUNBUFFERED=1** For details about how to write a Dockerfile, see official Docker documents. Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz. 8 Go to https://network.nvidia.com/products/infiniband-drivers/linux/ mlnx_ofed/, click Download, set Version to 5.4-3.5.8.0-LTS, OSDistributionVersion to Ubuntu 18.04, and Architecture to x86_64, and download MLNX OFED LINUX-5.4-3.5.8.0-ubuntu18.04-x86 64.tgz. Store the Dockerfile and Miniconda3 installation file in the **context** folder, 9. which is as follows: context Dockerfile MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tqz Miniconda3-py37_4.12.0-Linux-x86_64.sh pip.conf

tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

 Create the container image. Run the following command in the directory where the Dockerfile is stored to build the container image tensorflow:2.10.0-ofed-cuda11.2: docker build .-t tensorflow:2.10.0-ofed-cuda11.2
 The following log shows that the image has been created.

Step 6 Uploading the Image to SWR

1. Log in to the SWR console and select the target region.

Successfully tagged tensorflow:2.10.0-ofed-cuda11.2

Figure 4-28 SWR console

2. Click **Create Organization** in the upper right corner and enter an organization name to create an organization. Customize the organization name. Replace the organization name **deep-learning** in subsequent commands with the actual organization name.

Figure 4-29 Creating an organization

Create Organization

 Each organization You can create 5 of For centralized manual department, or indiving the examples Company or de Person: john 	name must be globally unique. rganizations. nagement of images, limit each organization to one company, idual. partment: cloud-hangzhou or cloud-develop
Organization Name	deep-learning

3. Click **Generate Login Command** in the upper right corner to obtain a login command.

Figure 4-30 Login Command

Cogin Comman	d	×
learn how to obtain a login co	mmand that has long-term validity.	
docker login -u	8@X	- ЭВ -
	0	
Valid Until: Sep 08, 202	2 10:43:52 GMT+08:00	

- 4. Log in to the local environment as the **root** user and enter the login command.
- 5. Upload the image to SWR.
 - a. Tag the uploaded image.
 # Replace the region, domain, as well as organization name deep-learning with the actual values.
 sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/tensorflow:2.10.0-ofed-cuda11.2
 b. Run the following command to upload the image:
 - # Replace the region, domain, as well as organization name **deep-learning** with the actual values. sudo docker push swr.{region-id}.{domain}/deep-learning/tensorflow:2.10.0-ofed-cuda11.2
- 6. After the image is uploaded, choose **My Images** in navigation pane on the left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts

- Log in to the ModelArts management console, check whether access authorization has been configured for your account. For details, see Configuring Agency Authorization. If you have been authorized using access keys, clear the authorization and configure agency authorization.
- 2. In the navigation pane, choose **Training Management** > **Training Jobs**. The training job list is displayed by default.
- 3. Click **Create Training Job**. On the page that is displayed, configure parameters and click **Next**.
 - Created By: Custom algorithms
 - Boot Mode: Custom images
 - Image path: image created in Step 5 Creating a Custom Image.
 - Code Directory: directory where the boot script file is stored in OBS, for example, obs://test-modelarts/tensorflow/code/. The training code is automatically downloaded to the \${MA_JOB_DIR}/code directory of the training container. code (customizable) is the last-level directory of the OBS path.
 - Boot Command: python \${MA_JOB_DIR}/code/mnist.py. code (customizable) is the last-level directory of the OBS path.
 - Training Input: Click Add Training Input. Enter data_path for the name, select the OBS path to mnist.npz, for example, obs://test-modelarts/ tensorflow/data/mnist.npz, and set Obtained from to Hyperparameters.
 - **Resource Pool**: Select **Public resource pools**.

- **Resource Type**: Select **GPU**.
- Compute Nodes: Enter 1.
- **Persistent Log Saving**: enabled
- Job Log Path: OBS path to stored training logs, for example, obs://testmodelarts/mindspore-gpu/log/
- 4. Confirm the configurations of the training job and click **Submit**.
- 5. Wait until the training job is created.

After you submit the job creation request, the system will automatically perform operations on the backend, such as downloading the container image and code directory and running the boot command. A training job requires a certain period of time for running. The duration ranges from dozens of minutes to several hours, varying depending on the service logic and selected resources. After the training job is executed, the log similar to the following is output.

Figure 4-31 Run logs of training jobs with GPU specifications

	0.9767
323	1503/1875 [====================================
	0.9769
324	1533/1875 [====================================
	0.9/69
325	1564/1875 [====================================
	0.9768
326	1595/1875 [====================================
	0.9//0
327	1624/1875 [===========================>] - ETA: Os - loss: 0.0742 - accuracy:
328	1654/1875 [====================================
	0.9770
329	1685/1875 [====================================
	0.9768
330	1716/1875 [====================================
	0.9767
331	1747/1875 [====================================
	0.9/6/
332	1778/1875 [====================================
	0.9767
333	1809/1875 [====================================
	0.9768
334	1841/1875 [====================================
	0.9767
335	1872/1875 [====================================
	0.9767
336	1875/1875 [=======================] - 3s 2ms/step - loss: 0.0752 - accuracy: 0.9767

4.3 Preparing a Training Image

4.3.1 Specifications for Custom Images for Training Jobs

When you use a locally developed model and training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.

Specifications

• Use Ubuntu 18.04 for custom images to in case versions are not compatible.

• Do not use a custom image larger than 15 GB. The size should not exceed half of the container engine space of the resource pool. Otherwise, the start time of the training job is affected.

The container engine space of ModelArts public resource pool is 50 GB. By default, the container engine space of the dedicated resource pool is also 50 GB. You can customize the container engine space when creating a dedicated resource pool.

- The **uid** of the default user of a custom image must be **1000**.
- The GPU or Ascend driver cannot be installed in a custom image. When you select GPU resources to run training jobs, ModelArts automatically places the GPU driver in the **/usr/local/nvidia** directory in the training environment. When you select Ascend resources to run training jobs, ModelArts automatically places the Ascend driver in the **/usr/local/Ascend/driver** directory.
- x86- or Arm-based custom images can run only with specifications corresponding to their architecture.
 - Run the following command to check the CPU architecture of a custom image:

docker inspect {*Custom image path*} | grep Architecture

The following is the command output for an Arm-based custom image: "Architecture": "arm64"

- If the name of a specification contains **Arm**, this specification is an Armbased CPU architecture.
- If the name of a specification does not contain **Arm**, this specification is an x86-based CPU architecture.

* Instance Flavor

GPU: 1*NVIDIA-V100(16GB) | CPU: 8 vCPUs 64GB 780GB

 ModelArts does not support the download of open source installation packages. Install the dependency packages required by the training job in the custom image.

4.3.2 Migrating an Image to ModelArts Training

To migrate an image to the training management, perform the following operations:

1. Add the default user group **ma-group** (**gid = 100**) of the training management for the image.

NOTE

If the user group whose **gid** is **100** already exists, the error message "groupadd: GID '100' already exists" may be displayed. You can use the command **cat /etc/group** | **grep 100** to check whether the user group whose GID is 100 exists.

If the user group whose **gid** is **100** already exists, skip this step and delete the command **RUN groupadd ma-group -g 100** from the Dockerfile.

2. Add the default user **ma-user** (**uid = 1000**) of the training management for the image.

NOTE

If the user whose **uid** is **1000** already exists, the error message "useradd: UID 1000 is not unique" may be displayed. You can use the command **cat /etc/passwd | grep 1000** to check whether the user whose UID is 1000 exists.

If the user whose **uid** is **1000** already exists, skip this step and delete the command **RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user** from the Dockerfile.

3. Modify the permissions on files in the image to allow **ma-user** whose **uid** is **1000** to read and write the files.

You can modify an image by referring to the following Dockerfile so that the image complies with specifications for custom images of the new-version training management.

FROM {An existing image}

USER root

If the user group whose GID is 100 already exists, delete the **groupadd** command. RUN groupadd ma-group -g 100 # If the user whose UID is 1000 already exists, delete the **useradd** command. RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Modify the permissions on image files so that user **ma-user** whose UID is 1000 can read and write the files.

RUN chown -R ma-user:100 {Path to the Python software package}

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image. USER ma-user WORKDIR /home/ma-user

After editing the Dockerfile, run the following command to build a new image:

docker build -f Dockerfile . -t {New image}

Upload the new image to SWR. For details, see **How Can I Log In to SWR and Upload Images to It?**

4.3.3 Using a Base Image to Create a Training Image

ModelArts provides deep learning-powered base images such as TensorFlow, PyTorch, and MindSpore images. In these images, the software mandatory for running training jobs has been installed. If the software in the base images cannot meet your service requirements, create new images based on the base images and use the new images to create training jobs.

Procedure

Perform the following operations to create an image using a training base image:

1. Install Docker. If the **docker images** command is executed, Docker has been installed. In this case, skip this step.

The following uses Linux x86_64 as an example to describe how to obtain the Docker installation package. Run the following command to install Docker: curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh

- 2. Create a folder named **context**. mkdir -p context
- 3. Obtain the **pip.conf** file. [global] index-url = *https://repo.huaweicloud.com/repository/pypi/simple* trusted-host = *repo.huaweicloud.com* timeout = 120
- 4. Create a new image based on a training base image provided by ModelArts. Save the edited Dockerfile in the **context** folder. For details about how to obtain a training base image, see **Available Training Base Images**. FROM {*Path to the training base image provided by ModelArts*}

```
# Configure pip.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf
```

Configure the preset environment variables of the container image.
Add the Python interpreter path to the PATH environment variable.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=\${ANACONDA_DIR}/envs/\${ENV_NAME}/bin:\$PATH \
PYTHONUNBUFFERED=1

RUN /home/ma-user/anaconda/bin/pip install --no-cache-dir numpy

- 5. Run the following command in the directory where the Dockerfile is stored to create a container image, for example, **training:v1**: docker build . -t training:v1
- 6. Upload the new image to SWR. For details, see **How Can I Log In to SWR** and Upload Images to It?.
- 7. Use the custom image to create a training job on ModelArts. For details, see Using a Custom Image to Create a CPU- or GPU-based Training Job.

4.3.4 Installing MLNX_OFED in a Container Image

Scenarios

The Mellanox Technologies NIC has been configured on ModelArts GPU servers to support Remote Direct Memory Access (RDMA). As a result, you can install MLNX_OFED in the container image, which will allow the **NCCL** to leverage the NIC and enhance the efficiency of cross-node communication.

After this NIC is enabled for NCCL, NET/IB is used for cross-node communication. If this NIC is not enabled, NET/Socket is used for cross-node communication. NET/IB is better than NET/Socket in terms of latency and bandwidth.

Table 4-6 Mellanox Technologies NIC and MLNX_OFED installation on ModelArts

 GPU servers

GPU Model	Mellanox Technologies NIC	Installed MLNX_OFED Version	Recommended MLNX_OFED Version for Container Image
V100	ConnectX-5	4.3-1.0.1.0/4.5- 1.0.1.0	4.9-6.0.6.0-LTS
Ant8/ Ant1	ConnectX-6 Dx	5.5-1.0.3.2	5.8-2.0.3.0-LTS

Installing MLNX_OFED

Take the Ubuntu18.04 container image as an example. The Dockerfile for installing MLNX_OFED 4.9-6.0.6.0-LTS is as follows:

NOTE

The host that is used to download files and create container images using a Dockerfile must be able to connect to the public network.

FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

```
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
  sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
  sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
  echo > /etc/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
  apt-get update && \
  apt-get install -- no-install-recommends -y lsb-core curl && \
  curl -k -o /tmp/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz https://content.mellanox.com/
ofed/MLNX_OFED-4.9-6.0.6.0/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz && \
  cd /tmp && \
  tar xzf MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz && \
  cd MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64 && \
  ./mlnxofedinstall --user-space-only --without-fw-update --without-neohost-backend --force && \
  rm /tmp/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz && \
  rm -rf /tmp/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64 && \
  apt-get clean && \
  mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
  rm /etc/apt/apt.conf.d/00skip-verify-peer.conf
```

Create a container image by referring to this command example:

docker build -f Dockerfile . -t nvidia/cuda:mlnx-ofed-4.9-11.1.1-runtime-ubuntu18.04

After the container image has been created, run this command to obtain the MLNX_OFED version in the container image:

docker run -ti --rm nvidia/cuda:mlnx-ofed-4.9-11.1.1-runtime-ubuntu18.04 ofed_info | head -n 1

The command output is as follows:

MLNX_OFED_LINUX-4.9-6.0.6.0 (OFED-4.9-6.0.6):

4.4 Creating an Algorithm Using a Custom Image

Your locally developed algorithms or algorithms developed using other tools can be uploaded to ModelArts for unified management.

Entries for Creating an Algorithm

You can create an algorithm using a custom image on ModelArts in either of the following ways:

- Entry 1: On the ModelArts console, choose **Algorithm Management** > **My algorithms**. Then, create an algorithm and use it in training jobs or publish it to AI Gallery.
- Entry 2: On the ModelArts console, choose **Training Management** > **Training Jobs**, and click **Create Training Job** to create a custom algorithm and submit

a training job. For details, see Using a Custom Image to Create a CPU- or GPU-based Training Job.

Parameters for creating an algorithm

Parameter	Description
Boot Mode	Select Custom images . This parameter is mandatory.
Image	 URL of an SWR image. This parameter is mandatory. Private images or shared images: Click Select on the right to select an SWR image. Ensure that the image has been uploaded to SWR. For details, see How Can I Log In to SWR and Upload Images to It?.
	 Public images: You can also manually enter the image path in the format of "<organization image<br="" to="" which="" your="">belongs>/<image name=""/>" on SWR. Do not contain the domain name (swr.<region>.xxx.com) in the path because the system will automatically add the domain name to the path. For example: modelarts-job-dev-image/pytorch_1_8:train-pytorch_1.8.0-cuda_10.2-py_3.7- euleros_2.10.1-x86_64-8.1.1</region></organization>
Code Directory	OBS path for storing the training code. This parameter is optional. Take OBS path obs://obs-bucket/training-test/demo-code as an example. The content in the OBS path will be automatically downloaded to \${MA_JOB_DIR}/demo-code in the training container, and demo-code (customizable) is the last-level directory of the OBS path.
Boot Command	Command for booting an image. This parameter is mandatory. The boot command will be automatically executed after the code directory is downloaded.
	 If the training boot script is a .py file, train.py for example, the boot command can be python \${MA_JOB_DIR}/demo- code/train.py.
	 If the training boot script is an .sh file, main.sh for example, the boot command can be bash \${MA_JOB_DIR}/demo- code/main.sh.
	Semicolons (;) and ampersands (&&) can be used to combine multiple boot commands, but line breaks are not supported. demo-code (customizable) in the boot command is the last-level directory of the OBS path.

Table 4-7 Parameters for creating an algorith	able 4-7	-7 Parameter	s for	creating	an	algorithr	n
--	----------	--------------	-------	----------	----	-----------	---

Configuring Pipelines

A preset image-based algorithm obtains data from an OBS bucket or dataset for model training. The training output is stored in an OBS bucket. The input and

output parameters in your algorithm code must be parsed to enable data exchange between ModelArts and OBS. For details about how to develop code for training on ModelArts, see **Developing a Custom Script**.

When you use a preset image to create an algorithm, configure the input and output pipelines.

• Input configurations

Table 4-8 Input configurations

Paramete r	Description
Parameter Name	Set the name based on the data input parameter in your algorithm code. The code path parameter must be the same as the training input parameter parsed in your algorithm code. Otherwise, the algorithm code cannot obtain the input data. For example, If you use argparse in the algorithm code to parse data_url into the data input, set the data input parameter to data_url when creating the algorithm.
Descriptio n	Customizable description of the input parameter,
Obtained from	Source of the input parameter. You can select Hyperparameters (default) or Environment variables.
Constraint s	Whether data is obtained from a storage path or ModelArts dataset.
	If you select the ModelArts dataset as the data source, the following constraints are added:
	• Labeling Type: For details, see Creating a Labeling Job.
	• Data Format , which can be Default , CarbonData , or both. Default indicates the manifest format.
	 Data Segmentation: available only for image classification, object detection, text classification, and sound classification datasets. Possible values are Segmented dataset, Dataset not segmented, and Unlimited. For details, see Publishing a Data Version.
Add	Multiple data input sources are allowed.

• Output configurations

Parameter	Description
Parameter Name	Set the name based on the data output parameter in your algorithm code. The code path parameter must be the same as the training output parameter parsed in your algorithm code. Otherwise, the algorithm code cannot obtain the output path.
	For example, If you use argparse in the algorithm code to parse train_url into the data output, set the data output parameter to train_url when creating the algorithm.
Descriptio n	Customizable description of the output parameter,
Obtained from	Source of the output parameter. You can select Hyperparameters (default) or Environment variables.
Add	Multiple data output paths are allowed.

Table 4-9 Output configurations

Defining Hyperparameters

When you use a preset image to create an algorithm, ModelArts allows you to customize hyperparameters so you can view or modify them anytime. After the hyperparameters are defined, they are displayed in the startup command and transferred to your boot file as CLI parameters.

1. Import hyperparameters.

You can click **Add hyperparameter** to manually add hyperparameters.

Figure 4-32 Adding hyperparameters

2. Edit hyperparameters.

For details, see **Table 4-10**.

Table 4-10 Hyperparameters

Parame ter	Description
Name	Hyperparameter name Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
	underscores (_) are allowed.
Туре	Type of the hyperparameter, which can be String, Integer, Float , or Boolean

Parame ter	Description
Default	Default value of the hyperparameter, which is used for training jobs by default
Constrai nts	Click Restrain . Then, set the range of the default value or enumerated value in the dialog box displayed.
Require d	 Select Yes or No. If you select No, you can delete the hyperparameter on the training job creation page when using this algorithm to create a training job. If you select Yes, you cannot delete the hyperparameter on the training job creation page when using this algorithm to create a training job.
Descript ion	Description of the hyperparameter Only letters, digits, spaces, hyphens (-), underscores (_), commas (,), and periods (.) are allowed.

Adding Training Constraints

You can add training constraints of the algorithm based on your needs.

- **Resource Type**: Select the required resource types.
- Multicard Training: Choose whether to support multi-card training. •
- **Distributed Training**: Choose whether to support distributed training.

Runtime Environment Preview

法行政培预监	្រា
- 但17-14-19-19-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	E .

in the lower

When creating an algorithm, click the arrow on right corner of the page to know the path of the code directory, boot file, and input and output data in the training container.

Follow-Up Procedure

After an algorithm is created, use it to create a training job. For details, see Using a Custom Image to Create a CPU- or GPU-based Training Job.

4.5 Using a Custom Image to Create a CPU- or GPUbased Training Job

Model training is an iterative optimization process. Through unified training management, you can flexibly select algorithms, data, and hyperparameters to obtain the optimal input configuration and model. After comparing metrics between job versions, you can determine the most satisfactory training job.

Prerequisites

- The data to be trained has been uploaded to an OBS directory.
- At least one empty folder for storing the training output has been created in OBS.
- A custom image has been created based on ModelArts specifications. For details about the custom image specifications, see **Specifications for Custom Images for Training Jobs**.
- The custom image has been uploaded to SWR. For details, see How Can I Log In to SWR and Upload Images to It?.

Creating a Training Job

- 1. Log in to the ModelArts management console. In the left navigation pane, choose **Training Management** > **Training Jobs**.
- 2. Click Create Training Job and set parameters.

Parameter	Description	
Algorithm Type	Select Custom algorithm . This parameter is mandatory.	
Boot Mode	Select Custom image . This parameter is mandatory.	
Image	Container image path. This parameter is mandatory. You can set the container image path in either of the following ways:	
	• To select your image or an image shared by others, click Select on the right and select a container image for training. The required image must be uploaded to SWR beforehand.	
	 To select a public image, enter the address of the public image in SWR. Enter the image path in the format of "Organization name/Image name:Version name". Do not contain the domain name (swr.<region>.xxx.com) in the path because the system will automatically add the domain name to the path. For example, if the SWR address of a public image is swr.<region>.xxx.com/test-image/tensorflow2_1_1:1.1.1, enter test-images/tensorflow2_1_1:1.1.1</region></region> 	

Table 4-11	Creating a	training	job ι	using a	a custom	image

Parameter	Description	
Code Directory	 Select the OBS directory where the training code file is stored. If the custom image does not contain training code, you need to set this parameter. If the custom image contains training code, you do not need to set this parameter. Upload code to the OBS bucket beforehand. The total size of files in the directory cannot exceed 5 GB, the number of files cannot exceed 1000, and the folder depth cannot exceed 32. The training code file is automatically downloaded to the \${MA_JOB_DIR}/demo-code directory of the training container when the training job is started. demo-code is the last-level OBS directory for storing the code. For example, if Code Directory is set to /test/code, the training code file is downloaded to the \${MA_JOB_DIR}/code directory of the training code file is downloaded to the \$code. For example, if Code Directory is set to /test/code, the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory is set to /test/code, the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downloaded to the \$code. For example, if Code Directory of the training code file is downlo	
User ID	 User ID for running the container. The default value 1000 is recommended. If the UID needs to be specified, its value must be within the specified range. The UID ranges of different resource pools are as follows: Public resource pool: 1000 to 65535 Dedicated resource pool: 0 to 65535 	
Boot Command	 Command for booting an image. This parameter is mandatory. When a training job is running, the boot command is automatically executed after the code directory is downloaded. If the training boot script is a .py file, train.py for example, the boot command is as follows. python \${MA_JOB_DIR}/demo-code/train.py If the training boot script is a .sh file, main.sh for example, the boot command is as follows. bash \${MA_JOB_DIR}/demo-code/main.sh You can use semicolons (;) and ampersands (&&) to combine multiple commands. demo-code in the command is the last-level OBS directory where the code is stored. Replace it with the actual one. 	
Local Code Directory	Specify the local directory of a training container. When a training starts, the system automatically downloads the code directory to this directory. The default local code directory is /home/ma-user/ modelarts/user-job-dir . This parameter is optional.	

Parameter	Description
Work Directory	During training, the system automatically runs the cd command to execute the boot file in this directory.

Table 4-12 Parameters for creating a training job

Paramet er	Sub- Paramet er	Description		
Input	Paramete r	The algorithm code reads the training input data based on the input parameter name.		
		Set this parameter to data_url , which is the same as the parameter for parsing the input data in the training code. You can set multiple training input parameters. The name of each training input parameter must be unique.		
		For example, if you use argparse in the training code to parse data_url into the data input, set the parameter name of the training input to data_url .		
		<pre># Create a parsing task. parser = argparse.ArgumentParser(description="train mnist", formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Add parameters. parser.add_argument('train_url', type=str, help='the path model saved')</pre>		
		parser.add_argument('data_url', type=str, help='the training data') # Parse the parameters. args, unknown = parser.parse_known_args()		
	Dataset	Click Dataset and select the target dataset and its version in the ModelArts dataset list.		
		When the training job is started, ModelArts automatically downloads the data in the input path to the training container.		
		NOTE ModelArts data management is being upgraded and is invisible to users who have not used data management. It is recommended that new users store their training data in OBS buckets.		
	Data path	Click Data path and select the storage path to the training input data from an OBS bucket.		
		When the training job is started, ModelArts automatically downloads the data in the input path to the training container.		

Paramet er	Sub- Paramet er	Description		
	How to Obtain	 The following uses training input data_path as an example. If you select Hyperparameters, use this code to obtain the data: import argparse parser = argparse.ArgumentParser() parser.add_argument('data_path') args, unknown = parser.parse_known_args() data_path = args.data_path If you select Environment variables, use this code to obtain the data: import os data_path = os.getenv("data_path", "") 		
Output	Paramete r	The algorithm code reads the training output data based on the output parameter name. Set this parameter to train_url , which is the same as the parameter for parsing the output data in the training code. You can set multiple training output parameters. The name of each training output parameter must be unique.		
	Data path	Click Data path and select the storage path to the training output data from an OBS bucket. During training, the system automatically synchronizes files from the local code directory of the training container to the data path. NOTE The data path can only be an OBS path. To prevent any issues with data storage, choose an empty directory as the data path.		
	How to Obtain	 The following uses the training output train_url as an example. If you select Hyperparameters, use this code to obtain the data: import argparse parser = argparse.ArgumentParser() parser.add_argument('train_url') args, unknown = parser.parse_known_args() train_url = args.train_url If you select Environment variables, use this code to obtain the data: import os train_url = os.getenv("train_url", "") 		

Paramet er	Sub- Paramet er	Description	
	Predownl oad	 Indicates whether to pre-download the files in the output directory to a local directory. If you set Predownload to No, the system does not download the files in the training output data path to a local directory of the training container when the training job is started. If you set Predownload to Yes, the system automatically downloads the files in the training output data path to a local directory of the training output data path to a local directory of the training output data path to a local directory of the training container when the training job is started. The larger the file size, the longer the download time. To avoid excessive training time, remove any unneeded files from the local code directory of the training container as soon as possible. To use resumable training and incremental training. Download must be 	
Hyperpar	-	selected. Used for training tuning. This parameter is optional.	
Environm ent Variable	-	Add environment variables based on service requirements. For details about preset environment variables in the training container, see Viewing Environment Variables of a Training Container.	
Auto Restart	-	 Number of retries for a failed training job. If this parameter is enabled, a failed training job will be automatically re-delivered and run. On the training job details page, you can view the number of retries for a failed training job. This function is disabled by default. If you enable this function, set the number of 	
		retries. The value ranges from 1 to 3 and cannot be changed.	

- 3. Select an instance flavor. The value range of the training parameters is consistent with the constraints of existing custom images. Select a public resource pool or dedicated resource pool as required. For details about the parameters, see **Creating a Training Job**.
- 4. Click **Submit** to create the training job.

It takes a period of time to create a training job.

To view the real-time status of a training job, go to the training job list and click the name of the training job. On the training job details page that is displayed, view the basic information of the training job. For details, see **Viewing Training Job Details**.

4.6 Troubleshooting Process

Symptom

A training job using a custom image failed.

Locating Method

- 1. Determine the image source.
 - Check whether the base image of the custom image is from ModelArts. Use a base image provided by ModelArts to create a custom image. For details, see **Using a Base Image to Create a Training Image**.
 - If the image is from a third party, check with the creator of the custom image for how to use this image.
- 2. Determine the size of the custom image.

Do not use a custom image larger than 15 GB. The size should not exceed half of the container engine space of the resource pool. Otherwise, the start time of the training job is affected.

The container engine space of ModelArts public resource pool is 50 GB. By default, the container engine space of the dedicated resource pool is also 50 GB. You can customize the container engine space when creating a dedicated resource pool.

- 3. Determine the error type.
 - If an error message is displayed indicating that a file could not be found, see Error Message "No such file or directory" Displayed in Training Job Logs.
 - If an error message is displayed indicating that a package could not be found, see Error Message "No module named .*" Displayed in Training Job Logs.
 - An error occurred in the Ascend startup script or initialization script.

Check whether the script is obtained from the official website and whether the script is used strictly following the instructions provided in official documents. For example, check whether the script name and path are correct.

- The driver version is incompatible with the underlying driver.

Before upgrading the driver of a custom image, check whether the upgraded version is supported by the underlying driver. **Obtain the supported driver versions**.

- You are not allowed to access a file.

The possible cause is that the user of the custom image is different from that of the job container. In this case, modify the Dockerfile.

RUN if id -u ma-user > /dev/null 2>&1 ; \ then echo 'The ModelArts user already exists.' ; \ else echo 'The ModelArts user does not exist.' && \ groupadd ma-group -g 1000 && \ useradd -d /home/ma-user -m -u 1000 -g 1000 -s /bin/bash ma-user ; fi && \ chmod 770 /home/ma-user && \ chmod 770 /root && \ usermod -a -G root ma-user

- For other issues, search for solutions in **training failure cases**.

Summary and Suggestions

Before using a custom image for training jobs, create the image by following the **custom image specifications**. which also provides end-to-end examples for your reference.

5 Using a Custom Image to Create AI applications for Inference Deployment

5.1 Custom Image Specifications for Creating AI Applications

When building a custom image using a locally developed model, ensure that the image complies with ModelArts specifications.

- No malicious code is allowed.
- A custom image cannot be larger than 50 GB.
- External APIs

Set the external service API for a custom image. The inference API must be the same as the URL defined by **apis** in **config.json**. Then, the external service API can be directly accessed when the image is started. The following is an example of accessing an MNIST image. The image contains a model trained using an MNIST dataset and can identify handwritten digits. **listen_ip** indicates the container IP address. You can start a custom image to obtain the container IP address from the container.

- Sample request curl -X POST \ http://{*Listening IP address*}8080/ \ -F images=@seven.jpg
 - Figure 5-1 Example of obtaining listen_ip

```
root@ lool 102 loo 2:/# cat /etc/hosts
l27.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
l69.254.30.2 d6211431d0e3
```

- Sample response
 {"mnist_result": 7}
- (Optional) Health check API

If services must not be interrupted during a rolling upgrade, the health check API must be configured in **config.json** for ModelArts. The health check API returns the healthy state for a service when the service is running properly or an error when the service becomes faulty.

NOTICE

The health check API must be configured for a hitless rolling upgrade.

The following shows a sample health check API:

- URI GET /health
- Sample request: curl -X GET \ http://{Listening IP address}:8080/health
- Sample response {"health": "true"}
- Status code

Table 5-1 Status code

Status Code	Message	Description
200	ОК	Request sent

Log file output

Configure standard output so that logs can be properly displayed.

Image boot file

To deploy a batch service, set the boot file of an image to **/home/run.sh** and use CMD to set the default boot path. The following is a sample Dockerfile:

CMD ["sh", "/home/run.sh"]

Image dependencies

To deploy a batch service, install dependency packages such as Python, JRE/ JDK, and ZIP in the image.

(Optional) Hitless rolling upgrade

To ensure that services are not interrupted during a rolling upgrade, set HTTP **keep-alive** to **200**. For example, Gunicorn does not support keep-alive by default. To ensure a hitless rolling upgrade, install Gevent and configure -keep-alive 200 -k gevent in the image. The parameter settings vary depending on the service framework. Set the parameters as required.

(Optional) Gracefully exiting a container

To ensure that services are not interrupted during a rolling upgrade, the system must capture SIGTERM signals in the container and wait for 60s before gracefully exiting the container. If the duration is less than 60s before the graceful exiting, services may be interrupted during the rolling upgrade. To ensure uninterrupted service running, the system exits the container after the system receives SIGTERM signals and processes all received requests. The whole duration is not longer than 90s. The following shows example **run.sh**: #!/bin/bash

gunicorn_pid=""

```
handle_sigterm() {
    echo "Received SIGTERM, send SIGTERM to $gunicorn_pid"
    if [ $gunicorn_pid != "" ]; then
        sleep 60
        kill -15 $gunicorn_pid # Transfer SIGTERM signals to the Gunicorn process.
        wait $gunicorn_pid # Wait until the Gunicorn process stops.
    fi
}
trap handle sigterm TERM
```

5.2 Creating a Custom Image and Using It to Create an AI Application

If you want to use an AI engine that is not supported by ModelArts, create a custom image for the engine, import the image to ModelArts, and use the image to create AI applications. This section describes how to use a custom image to create an AI application and deploy the application as a real-time service.

The process is as follows:

- 1. **Building an Image Locally**: Create a custom image package locally. For details, see **Custom Image Specifications for Creating AI Applications**.
- 2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the custom image and upload the custom image to SWR.
- 3. Using the Custom Image to Create an AI Application: Import the image to ModelArts AI application management.
- 4. **Deploying the AI Application as a Real-Time Service**: Deploy the model as a real-time service.

Building an Image Locally

This section uses a Linux x86_x64 host as an example. You can purchase an ECS of the same specifications or use an existing local host to create a custom image.

For details about how to purchase an ECS, see **Purchasing and Logging In to a Linux ECS**. When creating the ECS, select an Ubuntu 18.04 public image.

CPU Architecture	x86 Kunpeng	0	
Specifications	vCPUs 4 vCPUs	▼ Memory 4 GB ▼ Flavor Name Q	
	Flavor Name		vCPUs Memory ↓Ξ
	Si3.xlarge.1		4 vCPUs 4 GB
	Selected specifications	General computing \$13.xlarge.1 4 vCPUs 4 GB	
Image	Public image	Private image Shared image	
	🖒 Ubuntu	Ubuntu 18.04 server 64bit(40GB) C	

Figure 5-2 Creating an ECS using an x86 public image

1. After logging in to the host, install Docker. For details, see **Docker official documents**. Alternatively, run the following commands to install Docker: curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh

- 2. Obtain the base image. Ubuntu 18.04 is used in this example. docker pull ubuntu:18.04
- 3. Create the **self-define-images** folder, and edit **Dockerfile** and **test_app.py** in the folder for the custom image. In the sample code, the application code runs on the Flask framework.

The file structure is as follows:

self-define-images/

--Dockerfile

--test_app.py

Dockerfile

From ubuntu:18.04 # Configure the HUAWEI CLOUD source and install Python, Python3-PIP, and Flask. RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ apt-get update && \ apt-get install -y python3 python3-pip && \ pip3 install --trusted-host https://repo.huaweicloud.com -i https://repo.huaweicloud.com/ repository/pypi/simple Flask # Copy the application code to the image. COPY test_app.py /opt/test_app.py # Specify the boot command of the image. CMD python3 /opt/test_app.py test_app.py from flask import Flask, request import json app = Flask(__name__) @app.route('/greet', methods=['POST']) def say_hello_func(): print("------ in hello func ------") data = json.loads(request.get_data(as_text=True)) print(data) username = data['name'] rsp_msg = 'Hello, {}!'.format(username) return json.dumps({"response":rsp_msg}, indent=4) @app.route('/goodbye', methods=['GET'])

def say_goodbye_func(): print("------' in goodbye func -----'') return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("------- in default func ------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

- Switch to the self-define-images folder and run the following command to create custom image test:v1: docker build -t test:v1.
- 5. Run **docker images** to view the custom image you have created.

Verifying the Image Locally and Uploading It to SWR

1. Run the following command in the local environment to start the custom image:

docker run -it -p 8080:8080 test:v1

Figure 5-3 Starting a custom image

2. Open another terminal and run the following commands to test the functions of the three APIs of the custom image:

curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/ curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet curl -X GET 127.0.0.1:8080/goodbye

If information similar to the following is displayed, the function verification is successful.

Figure 5-4 Testing API functions

- 3. Upload the custom image to SWR. For details, see How Can I Upload Images to SWR?
- 4. View the uploaded image on the **My Images** > **Private Images** page of the SWR console.

Using the Custom Image to Create an AI Application

Import a meta model. For details, see **Creating and Importing a Model Image**. Key parameters are as follows:

- Meta Model Source: Select Container image.
 - **Container Image Path**: Select the created private image.

Figure 5-5 Created private image

Select Image						
My Images					Q	
My Images	Shared Images		Ente	Enter a job name. Q		
Name		Updated On	Organization	Versions		
6		Mar 26, 2024 15:15:41 GMT+08:00		1		

 Container API: Protocol and port number for starting a model. Ensure that the protocol and port number are the same as those provided in the custom image.

- **Image Replication**: indicates whether to copy the model image in the container image to ModelArts. This parameter is optional.
- Health Check: checks health status of a model. This parameter is optional. This parameter is configurable only when the health check API is configured in the custom image. Otherwise, creating the AI application will fail.
- **APIs**: APIs of a custom image. This parameter is optional. The model APIs must comply with ModelArts specifications. For details, see **Specifications for Editing a Model Configuration File**.

The configuration file is as follows:

```
[{
     "url": "/",
     "method": "post",
     "request": {
        "Content-type": "application/json"
     },
     "response": {
        "Content-type": "application/json"
     }
  },
{
     "url": "/greet",
     "method": "post",
     "request": {
        "Content-type": "application/json"
     "response": {
        "Content-type": "application/json"
     }
  },
{
     "url": "/goodbye",
     "method": "get",
     "request": {
        "Content-type": "application/json"
     },
     "response": {
        "Content-type": "application/json"
     }
  }
1
```

Deploying the AI Application as a Real-Time Service

- 1. Deploy the AI application as a real-time service. For details, see **Deploying as** a **Real-Time Service**.
- 2. View the details about the real-time service.
- 3. Access the real-time service on the **Prediction** tab page.
Figure 5-6 Accessing a real-time service

sage Guides Prediction Configuration Updates Monitoring Events Logs Cloud Shell Tags	
aquest Path t v	Response
i ["Dallo" fy sae is soldert:"]	1 called default for ((%alls': "ay new is modelets") 4

6_{FAQs}

6.1 How Can I Log In to SWR and Upload Images to It?

This section describes how to log in to SWR and upload images to it.

Step 1 Log In to SWR

1. Log in to the SWR console and select the target region.

Figure 6-1 SWR console

SWR	Dashboard ⑦		+ Create Organi.	ization 📩 Upload Image	are Generate Login Command
Deshboard My Images Image Resources Organization Management	Getting Started	2 Upload Image	Create Application	Add Trigger	Quick Start Guide Creating an Organization Uploading an Image Creating an Image Package Adding Permissions
	Create an organization to which you can upload images and manage them. Create Organization	Upload a local image to the organization or use a public image. Upload Local image Use Public image	Use CCE to create an application from the image. Use CCE to Create Application	Add triggers in SWR to automatically update the application when the image is updated. Add Trigger	

2. Click **Create Organization** in the upper right corner and enter an organization name to create an organization. **deep-learning** is used as an example. Replace it in subsequent commands with the actual organization name.

Figure 6-2 Creating an organization

Create Organization			
1 You can create 5 more organizations.	×		
 Each organization name must be globally unique. You can create 5 organizations. For centralized management of images, limit each organization to one company, department, or individual. Examples Company or department: cloud-hangzhou or cloud-develop Person: john 			
Organization Name deep-learning			

3. Click **Generate Login Command** in the upper right corner to obtain a login command.

Figure 6-3 Login Command

	Login Command	×
Ð	Learn how to obtain a login command that has long-term validity.	
	docker login -u @	
	a80dedd swr	
	Valid Until: Aug 31, 2022 11:24:16 GMT+08:00	

4. Log in to the ECS as user **root** and enter the login command.

Figure 6-4 Login command executed on the ECS

WARNING Using --password via the CLT is insecure. Use --password-stdin. WARNING Using account lib e stored unencrypted in /root/.docker/config.json. Configure a credential helper to remove this warning. See https://docs.docker.com/engine/reference/commandline/login/#credentials-store Login Succeeded

Step 2 Upload Images to SWR

This section describes how to upload an image to SWR.

- 1. Log in to SWR and tag the image to be uploaded. Replace the organization name **deep-learning** in the following command with the actual organization name obtained in step 1. sudo docker tag tf-1.13.2:latest swr.xxx.com/deep-learning/tf-1.13.2:latest
- 2. Run the following command to upload the image: sudo docker push swr.xxx.com/deep-learning/tf-1.13.2:latest

Figure 6-5 Uploading an image

<pre>root@ecs-7918:~# sudo docker tag tf-1.13.2:latest swr</pre>
<pre>voot@ecs-7918:~# sudo docker push swr.</pre>
the push refers to repository [swr
:554b77ee0db: Pushed
42871f33e88: Pushed
Bade5a612e2: Pushed
l@cfaf8c1ab8: Pushed
if7955efefcb: Pushed
if6a5fe577ce: Pushed
4c051ffa5f2: Pushed
184f790bb501: Pushed
ifbea9e01449: Pushed
0193b2fb026: Pushed
98177ec269a: Pushed
1e535525773: Pushed
82ab80c9f26: Pushed
le3516398cef: Pushed
2ad947278f1: Pushed
d841c774a30: Pushed
17b9a4b22186: Pushed
e0b3afb09dc3: Pushed
c01b5a53aac: Pushed
c6ac8e5063e: Pushed
cc967c529ced: Pushed
atact, digact, cha256, h10dad2d0500210h109705d01060h097257061900dh146hbh270162144c10667 cizo, 4725

3. After the image is uploaded, choose **My Images** in navigation pane on the left of the SWR console to view the uploaded custom images.

Figure 6-6 Uploaded custom image

SWR	My Images ⑦	
Dashboard My Images Image Resources • Organizations Experience Center	Private Images Shared Images Delete Name J pytorcl	

swr.xxx.com/deep-learning/tf-1.13.2:latest is the SWR URL of the custom image.

6.2 How Do I Configure Environment Variables for an Image?

In a Dockerfile, use the ENV instruction to configure environment variables. For details, see **Dockerfile reference**.

6.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?

An image saved using a notebook instance contains the **Entrypoint** parameter, as shown in **Entrypoint**. The executable file or command specified in the **Entrypoint** parameter overwrites the default boot command of the image. The command input in the **Entrypoint** parameter is not preset in the image. When you run **docker run** in the local environment to start the image, an error message is displayed, indicating that the container creation task fails because the boot file or directory is not found, as shown in **Figure 6-8**.

To avoid this error, configure the --entrypoint parameter to overwrite the program specified in Entrypoint. Use the boot file or command specified by the --entrypoint parameter to start the image. Example:

docker run -it -d --entrypoint /bin/bash image:tag

Figure 6-8 Error reported when an image is being started

6.4 How Do I Configure a Conda Source in a Notebook Development Environment?

You can install the development dependencies in Notebook as you need. Package management tools pip and Conda can be used to install regular dependencies. The pip source has been configured and can be used for installation, while the Conda source requires further configuration.

This section describes how to configure the Conda source on a notebook instance.

Configuring the Conda Source

The Conda software has been preset in images.

Common Conda Commands

For details about all Conda commands, see **Conda official documents**. The following table lists only common commands.

Descripti on	Command
Obtain online help.	condahelp conda updatehelp # Obtain help for a command, for example, update .

Table 6-1 Common Conda commands

Descripti on	Command
View the Conda version.	conda -V
Update Conda.	conda update conda # Update Conda. conda update anaconda # Update Anaconda.
Manage environm ents.	conda env list # Show all virtual environments. conda info -e # Show all virtual environments. conda create -n myenv python=3.7 # Create an environment named myenv with Python version 3.7 . conda activate myenv # Activate the myenv environment. conda deactivate # Disable the current environment. conda remove -n myenvall # Delete the myenv environment. conda create -n newnameclone oldname # Clone the old environment to the new environment.
Manage packages.	conda list # Check the packages that have been installed in the current environment. conda list -n myenv # Specify the packages installed in the myenv environment. conda search numpy # Obtain all information of the numpy package. conda search numpy=1.12.0info # View the information of NumPy 1.12.0. conda install numpy pandas # Concurrently install the NumPy and Pandas packages. conda install numpy=1.12.0 # Install NumPy of a specified version. # The install , update , and remove commands use -n to specify an environment, and the install and update commands use -c to specify a source address. conda install -n myenv numpy # Install the numpy package in the myenv environment. conda install -c https://conda.anaconda.org/anaconda numpy # Install NumPy using https://conda.anaconda.org/anaconda. conda update numpy pandas # Concurrently update the NumPy and Pandas packages. conda remove numpy pandas # Concurrently uninstall the NumPy and Pandas packages. conda updateall # Update all packages in the current environment.
Clear Conda.	conda clean -p # Delete useless packages. conda clean -t # Delete compressed packages. conda clean -yall # Delete all installation packages and clear caches.

Saving as an Image

After installing the external libraries, save the environment using the image saving function provided by ModelArts notebook of the new version. You can save a running notebook instance as a custom image with one click for future use. After the dependency packages are installed on a notebook instance, it is a good practice to save the instance as an image to prevent the dependency packages from being lost. For details, see **Saving a Notebook Environment Image**.

6.5 What Are Supported Software Versions for a Custom Image?

If your custom image uses software libraries such as NCCL, CUDA, and OFED, ensure that the software libraries meet the following version requirements:

- NCCL 2.7.8 or later
- OFED MLNX_OFED_LINUX-5.4-3.1.0.0 or later

• The CUDA version needs to be adapted to the GPU driver version of the dedicated resource pool. To obtain the GPU driver version, go to the dedicated resource pool details page.

7 Modification History

Released Date	Description
2023-10-01	 Added the following content: Added Starting Training with a Preset Image.
2023-09-07	 Added the following content: Added What Are Supported Software Versions for a Custom Image?. Modified the following content: Changed the manual name from "Using Custom Images" to "Image Management". Adjusted content in "Preset Images". Combined the development environment and training and inference base images into Using a Preset Image.