
ModelArts

Image Management

Issue 01

Date 2024-04-30

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Image Management..1

2 Using a Preset Image..4
2.1 Images Preset in Notebook..4
2.1.1 Notebook Base Images.. 4
2.1.2 Notebook Base Image List.. 5
2.1.3 PyTorch (x86)-powered Notebook Base Image...6
2.1.4 Tensorflow (x86)-powered Notebook Base Image.. 12
2.1.5 MindSpore (x86)-powered Notebook Base Image.. 16
2.1.6 Custom Dedicated Image (x86)-powered Notebook Base Image..24
2.2 Training Base Image...26
2.2.1 Available Training Base Images.. 27
2.2.2 Training Base Image (PyTorch)... 27
2.2.3 Training Base Image (TensorFlow).. 28
2.2.4 Training Base Image (Horovod)... 29
2.2.5 Training Base Image (MPI) ... 31
2.2.6 Starting Training with a Preset Image..31
2.2.6.1 PyTorch.. 31
2.2.6.2 TensorFlow... 35
2.2.6.3 Horovod/MPI/MindSpore-GPU.. 37
2.3 Inference Base Images.. 40
2.3.1 Available Inference Base Images..40
2.3.2 TensorFlow (CPU/GPU)-powered Inference Base Images... 42
2.3.3 PyTorch (CPU/GPU)-powered Inference Base Images.. 47
2.3.4 MindSpore (CPU/GPU)-powered Inference Base Images.. 50

3 Using Custom Images in Notebook Instances..56
3.1 Registering an Image in ModelArts.. 56
3.2 Creating a Custom Image.. 57
3.3 Saving a Notebook Instance as a Custom Image.. 57
3.3.1 Saving a Notebook Environment Image... 58
3.3.2 Using a Custom Image to Create a Notebook Instance.. 59
3.4 Creating and Using a Custom Image in Notebook... 59
3.4.1 Application Scenarios and Process.. 59

ModelArts
Image Management Contents

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.4.2 Step 1 Creating a Custom Image... 60
3.4.3 Step 2 Registering a New Image... 62
3.4.4 Step 3 Using a New Image to Create a Development Environment... 63
3.5 Creating a Custom Image on an ECS and Using It in Notebook..63
3.5.1 Application Scenarios and Process.. 63
3.5.2 Step 1 Preparing a Docker Server and Configuring an Environment..64
3.5.3 Step 2 Creating a Custom Image... 65
3.5.4 Step 3 Registering a New Image... 68
3.5.5 Step 5 Creating and Starting a Development Environment... 69

4 Using a Custom Image to Train Models (Model Training)..71
4.1 Overview.. 71
4.2 Example: Creating a Custom Image for Training... 73
4.2.1 Example: Creating a Custom Image for Training (PyTorch + CPU/GPU)... 74
4.2.2 Example: Creating a Custom Image for Training (MPI + CPU/GPU)... 80
4.2.3 Example: Creating a Custom Image for Training (Horovod-PyTorch and GPUs)..89
4.2.4 Example: Creating a Custom Image for Training (MindSpore and GPUs).. 102
4.2.5 Example: Creating a Custom Image for Training (TensorFlow and GPUs)... 112
4.3 Preparing a Training Image...119
4.3.1 Specifications for Custom Images for Training Jobs... 119
4.3.2 Migrating an Image to ModelArts Training... 120
4.3.3 Using a Base Image to Create a Training Image... 121
4.3.4 Installing MLNX_OFED in a Container Image... 122
4.4 Creating an Algorithm Using a Custom Image..123
4.5 Using a Custom Image to Create a CPU- or GPU-based Training Job...127
4.6 Troubleshooting Process...133

5 Using a Custom Image to Create AI applications for Inference Deployment...... 135
5.1 Custom Image Specifications for Creating AI Applications..135
5.2 Creating a Custom Image and Using It to Create an AI Application... 137

6 FAQs... 142
6.1 How Can I Log In to SWR and Upload Images to It?.. 142
6.2 How Do I Configure Environment Variables for an Image?.. 144
6.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?... 144
6.4 How Do I Configure a Conda Source in a Notebook Development Environment?.....................................145
6.5 What Are Supported Software Versions for a Custom Image?.. 146

7 Modification History...148

ModelArts
Image Management Contents

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Image Management

Overview
During the development and runtime of AI services, complex environment
dependencies need to be debugged for containerization. In the best practices of AI
development in ModelArts, container images are used to provide fixed runtime
environments. In this way, dependencies can be managed and the runtime
environments can be easily switched. The container resources provided by
ModelArts enable quick and efficient AI development and model experiment
iteration.

The preset images provided by ModelArts by default have the following features:

● Out-of-the-box and scenario-specific: Typical dependent environments for AI
development are preset in these images to provide optimal software, OS, and
network configurations. They have been fully tested on hardware to ensure
optimal compatibility and performance.

● Configuration customizable: Preset images are stored in the SWR repository
for you to customize and register them as your own images.

● Secure and reliable: Access policies, user permissions control, vulnerability
scanning for development software, and OS are configured based on best
practices for security hardening to ensure the security of images.

If you have special requirements on the deep learning engine and development
library, you can use ModelArts custom images to customize runtime engines.

Based on the container technology, you can customize container images and run
them on ModelArts. Custom images support CLI parameters and environment
variables in free text format, featuring high flexibility for a wide range of compute
engines.

Application Scenarios of Preset Images
ModelArts provides a group of preset images. You can use a preset image to
create a notebook instance. After installing and configuring dependencies on the
instance, create a custom image. Then, you can directly use the image in
ModelArts for training jobs without any adaptation. You can also use preset
images to submit training jobs and create AI applications.

ModelArts
Image Management 1 Image Management

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

We recommend the preset image version based on your development
requirements and stability of the version. If your development can be carried out
using versions preset in ModelArts, for example, MindSpore 1.X, use the preset
images. They have been fully verified and have many commonly-used installation
packages, relieving you from configuring the environment.

Application Scenarios of Custom Images
● Using custom images on notebook instances

If the preset images of notebook instances cannot meet requirements, you
can create a custom image by installing and configuring the software and
other data required by the environment in a preset image. Then, use the
custom image to create new notebook instances.

● Using a custom image to create training jobs
If you have developed a model or training script locally but the AI engine you
used is not supported by ModelArts, create a custom image and upload it to
SWR. Then, use this image to create a training job on ModelArts and use the
resources provided by ModelArts to train models.

● Using a custom image to create AI applications
If you have developed a model using an AI engine that is not supported by
ModelArts, to use this model to create AI applications, do as follows: Create a
custom image, import the image to ModelArts, and use it to create AI
applications. The AI applications created in this way can be centrally managed
and deployed as services.

Custom Image Services

When you use a custom image, the following services may be involved:

● SWR
Software Repository for Container (SWR) provides easy, secure, and reliable
management over container images throughout their lifecycle, facilitating the
deployment of containerized applications. You can upload, download, and
manage container images through the SWR console, SWR APIs, or community
CLI.
Your custom images must be uploaded to SWR. The custom images used by
ModelArts for training or creating AI applications are obtained from the SWR
service management list.

Figure 1-1 Obtaining images

● OBS
Object Storage Service (OBS) is a cloud storage service optimized for storing
massive amounts of data. It provides unlimited, secure, and highly reliable
storage capabilities at a relatively low cost.

ModelArts
Image Management 1 Image Management

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

ModelArts exchanges data with OBS. You can store data in OBS.
● ECS

An Elastic Cloud Server (ECS) is a basic computing unit that consists of vCPUs,
memory, OS, and Elastic Volume Service (EVS) disks. After an ECS is created,
you can use it similarly to how you would use your local PC or physical server.
You can create a custom image on premises or on an ECS.

NO TE

When you use a custom image, ModelArts may need to access dependent services, such as
SWR and OBS. The custom image can be used only after the access is authorized. It is a
good practice to use an agency for authorization. After the agency is configured, the
permissions to access dependent services are delegated to ModelArts so that ModelArts can
use the dependent services and perform operations on resources on your behalf. For details,
see Configuring Access Authorization (Global Configuration).

ModelArts
Image Management 1 Image Management

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

2 Using a Preset Image

2.1 Images Preset in Notebook

2.1.1 Notebook Base Images

Presetting Images
The images preset in ModelArts DevEnviron include:

● Typical preset packages: AI engines based on standard Conda, data analysis
software packages such as Pandas and Numpy, and tool software such as
CUDA and CUDNN are included to meet your needs.

● Preset Conda environments: A Conda environment and basic Conda Python
(excluding any AI engine) are created for each preset image. The following
figure shows the Conda environment for a preset MindSpore image.

Select a Conda environment based on whether MindSpore is used for
debugging.

● Notebook: a web application that enables you to code on the GUI and
combine the code, mathematical equations, and visualized content into a
document.

● JupyterLab plug-ins: enable flavor changing and instance stopping to improve
user experience. After a notebook instance is stopped, its CPUs and memory
are no longer billed.

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

● Remote SSH: allows you to remotely start and debug a notebook instance
from a local PC.

● Images preset in ModelArts DevEnviron: After these preset images support
function development, the custom images created based on these preset
images can be directly used for ModelArts training jobs.

A ModelArts preset image is started as user ma-user. The default working
directory of an accessed notebook instance is /home/ma-user/work.

Create an instance and mount the persistent storage to /home/ma-user/work.
The data stored only in the work directory is retained after the instance is stopped
and restarted. When you use a development environment, store the data for
persistence in /home/ma-user/work.

Creating a Notebook Instance Using a Preset Image

Select a preset image when creating a notebook instance. You can access and use
the instance right after it is created.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook to access the new-version Notebook
page.

2. Click Create. On the Create Notebook page, select a public image, configure
other parameters, and submit the creation request. For details about the
parameters, see Creating a Notebook Instance.

3. After the status of the notebook instance changes to Running, access the
notebook to use the created image.

2.1.2 Notebook Base Image List
ModelArts DevEnviron provides Docker container images, which can run as preset
containers. Certain preset images are built on common AI engine frameworks such
as PyTorch, TensorFlow, and MindSpore. These images are named using the AI
engines. Additionally, many common packages are preset in these images,
relieving you from the package installation.

Table 2-1 Preset x86 images

AI Engine Image

PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04

pytorch1.10-cuda10.2-cudnn7-ubuntu18.04

pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/devtool-modelarts/devtool-modelarts_0004.html

AI Engine Image

Tensorflow tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04

tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

MindSpore mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04

mindspore1.7.0-py3.7-ubuntu18.04

mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04

mindspore1.2.0-openmpi2.1.1-ubuntu18.04

No AI engine (base
images dedicated
for image
customization)

conda3-cuda10.2-cudnn7-ubuntu18.04

conda3-ubuntu18.04

2.1.3 PyTorch (x86)-powered Notebook Base Image
ModelArts provides the following notebook base images powered by PyTorch
(x86): pytorch1.8-cuda10.2-cudnn7-ubuntu18.04, pytorch1.10-cuda10.2-
cudnn7-ubuntu18.04, and pytorch1.4-cuda10.1-cudnn7-ubuntu18.04.

Image pytorch1.8-cuda10.2-cudnn7-ubuntu18.04

Table 2-2 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

PyTor
ch
1.8

Yes
(cuda
10.2)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
pytorch_1_8:pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64-20220926104358-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

torch 1.8.0
torchvision 0.9.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
pillow 9.2.0
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
tensorboard
2.1.1

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
pandoc
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Image pytorch1.10-cuda10.2-cudnn7-ubuntu18.04

Table 2-3 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

PyTor
ch
1.10

Yes
(cuda
10.2)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
pytorch_1_10:pytorch_1.10.2
-cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64-20221008154718-2b
3e39c

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

torch 1.10.2
torchvision
0.11.3
ipykernel 5.3.4
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
pillow 9.2.0
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
pandoc
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Image pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

Table 2-4 pytorch1.4-cuda10.1-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

PyTor
ch
1.4

Yes
(cuda
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
pytorch_1_4:pytorch_1.4-
cuda_10.1-py37-
ubuntu_18.04-
x86_64-20220926104017-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

torch 1.4.0
torchvision 0.5.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
pillow 9.2.0
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
tensorboard
2.1.1

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
pandoc
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2.1.4 Tensorflow (x86)-powered Notebook Base Image
ModelArts provides the following notebook base images powered by Tensorflow
(x86): tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04 and tensorflow1.13-
cuda10.0-cudnn7-ubuntu18.04

Image tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04

Table 2-5 tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Tenso
rFlow
2.1

Yes
(cuda
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
tensorflow_2_1:tensorflow_2
.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64-20220926144607-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

tensorflow 2.1.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
pillow 9.2.0
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
tensorboard
2.1.1

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Image tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

Table 2-6 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Tenso
rFlow
1.13-
gpu

Yes
(cuda
10.0)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
tensorflow_1_13:tensorflow_
1.13-cuda_10.0-py_3.7-
ubuntu_18.04-
x86_64-20220926104358-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

tensorflow-gpu
1.13.1
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.17.0
opencv-python
4.1.2.30
pandas 1.1.5
pillow 6.2.0
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.2.2
scikit-learn
0.22.1
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

2.1.5 MindSpore (x86)-powered Notebook Base Image
ModelArts provides the following notebook base images powered by MindSpore
(x86): mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04, mindspore1.7.0-py3.7-
ubuntu18.04, mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04, and
mindspore1.2.0-openmpi2.1.1-ubuntu18.04.

Image mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04

Table 2-7 mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
Spore
-gpu
1.7.0

Yes
(cuda
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_7_0:mindspore
_1.7.0-cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64-20220926104017-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore-gpu
1.7.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.17.0
pandas 1.1.5
pillow 9.1.1
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.1
mindinsight
1.7.0
mindvision 0.1.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Image mindspore1.7.0-py3.7-ubuntu18.04

Table 2-8 mindspore1.7.0-py3.7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
Spore
1.7.0

None swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_7_0:mindspore
_1.7.0-cpu-py_3.7-
ubuntu_18.04-
x86_64-20220926104017-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore 1.7.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.17.0
pandas 1.1.5
pillow 9.1.1
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.1
mindinsight
1.7.0
mindvision 0.1.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Image mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04

Table 2-9 mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
Spore
-gpu
1.2.0

Yes
(cuda
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_2_0:mindspore
_1.2.0-py_3.7-cuda_10.1-
ubuntu_18.04-
x86_64-20220926104106-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore-gpu
1.2.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.1.5
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
pandas 1.1.5
pillow 6.2.0
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
mindinsight
1.2.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Image mindspore1.2.0-openmpi2.1.1-ubuntu18.04

Table 2-10 mindspore1.2.0-openmpi2.1.1-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
Spore
1.2.0

None swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_2_0:mindspore
_1.2.0-py_3.7-ubuntu_18.04-
x86_64-20220926104106-04
1ba2e

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore 1.2.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.1.5
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
pandas 6.2.0
pillow 9.1.1
pip 22.1.2
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
mindinsight
1.2.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

2.1.6 Custom Dedicated Image (x86)-powered Notebook Base
Image

ModelArts provides the following notebook base images powered by custom
images (x86): conda3-cuda10.2-cudnn7-ubuntu18.04 and conda3-ubuntu18.04.
These images do not have AI engines or related software packages. The image
size is only 2 GB to 5 GB. You can use these images as base images and install
your desired engine and dependency packages, improving scalability. In addition,
these images are preset with some configurations required for starting the
development environment. You can use these images after installing required
software packages, without the need for any adaptations.

Such images are the most basic ones and have no component installed. They are
small enough to facilitate image customization. If you need to use the OBS SDK,
use ModelArts SDK instead to copy files. For details, see Transferring Files.

Image conda3-cuda10.2-cudnn7-ubuntu18.04

Table 2-11 conda3-cuda10.2-cudnn7-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

None Yes
(cuda
10.2)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
user_defined_base:cuda_10.2
-ubuntu_18.04-
x86_64-20221008154718-2b
3e39c

PyPI package Ubuntu
package

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0437.html

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

ipykernel 6.7.0

ipython 7.34.0

jupyter-client
7.3.4

ma-cau 1.1.3

ma-cau-adapter
1.1.3

ma-cli 1.1.5

matplotlib 3.5.1

modelarts
1.4.11

moxing-
framework
2.1.0.5d9c87c8

numpy 1.21.6

pandas 1.3.5

pillow 9.2.0

pip 20.3.3

psutil 5.9.1

PyYAML 6.0

scipy 1.7.3

tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
g++
gcc
gfortran
grep
libcudnn7
libcudnn7-
dev
nginx
python3
rpm
tar
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Image conda3-ubuntu18.04

Table 2-12 conda3-ubuntu18.04 description

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

None No swr.
{region_id}.myhuaweicloud.c
om/atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c
For example:
CN North-Beijing4
swr.cn-
north-4.myhuaweicloud.com
/atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c
CN East-Shanghai1
swr.cn-
east-3.myhuaweicloud.com/
atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c
CN South-Guangzhou
swr.cn-
south-1.myhuaweicloud.com
/atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c

PyPI package Ubuntu
package

ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.1.5
matplotlib 3.5.1
modelarts
1.4.11
moxing-
framework
2.1.0.5d9c87c8
numpy 1.21.6
pandas 1.3.5
pillow 9.2.0
pip 20.3.3
psutil 5.9.1
PyYAML 6.0
scipy 1.7.3
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
g++
gcc
gfortran
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

2.2 Training Base Image

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

2.2.1 Available Training Base Images
ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot
meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Available Training Base Images
The following table lists the preset training base images of ModelArts.

Table 2-13 ModelArts training base images

Engine Version

PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

Horovod horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

MPI mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

NO TE

Supported AI engines vary depending on regions.

2.2.2 Training Base Image (PyTorch)
This section describes preset PyTorch images.

Engine Version: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{region}.myhuaweicloud.com/aip/pytorch_1_8:train-

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-
roma-20220309171256-40adcc1

● Image creation time: 20220309171256 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● cuda: 10.2.89
● cudnn: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

PyTorch-1.8/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

PyTorch-1.8/lib/python3.7/site-packages
● The versions of some third-party packages:

Cython 0.27.3
dask 2022.2.0

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

easydict 1.9
enum34 1.1.10
torch 1.8.0
Flask 1.1.1
grpcio 1.44.0
gunicorn 20.1.0
idna 3.3
torchtext 0.5.0
imageio 2.16.0
imgaug 0.4.0
lxml 4.8.0
matplotlib 3.5.1
torchvision 0.9.0
mmcv 1.2.7
numba 0.47.0
numpy 1.21.5
opencv-python 4.1.2.30
toml 0.10.2
pandas 1.1.5
Pillow 9.0.1
pip 21.2.2
protobuf 3.19.4
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 6.0
requests 2.27.1
scikit-image 0.19.2
...

● Earlier versions: none

2.2.3 Training Base Image (TensorFlow)
This section describes preset TensorFlow images.

Engine Version: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{region}.myhuaweicloud.com/aip/tensorflow_2_1:train-

tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20210912152543-1e0838d

● Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● cuda: 10.1.243
● cudnn: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

TensorFlow-2.1/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-2.1/lib/python3.7/site-packages
● The versions of some third-party packages:

Cython 0.29.21
dask 2021.9.0
easydict 1.9
enum34 1.1.10
tensorflow 2.1.0
Flask 1.1.1
grpcio 1.40.0
gunicorn 20.1.0
idna 3.2
tensorflow-estimator 2.1.0
imageio 2.9.0
imgaug 0.4.0
lxml 4.6.3

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

matplotlib 3.4.3
termcolor 1.1.0
scikit-image 0.18.3
numba 0.47.0
numpy 1.17.0
opencv-python 4.1.2.30
tifffile 2021.8.30
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
protobuf 3.17.3
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
requests 2.26.0
...

● Earlier versions: none

2.2.4 Training Base Image (Horovod)
This section describes preset Horovod images.

Engine Version 1: horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

● Image address: swr.{region}.myhuaweicloud.com/aip/
horovod_tensorflow:train-horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64-20210912152543-1e0838d

● Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● cuda: 10.1.243
● cudnn: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

horovod_0.20.0-tensorflow_2.1.0/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

horovod_0.20.0-tensorflow_2.1.0/lib/python3.7/site-packages
● The versions of some third-party packages:

Cython 0.29.21
dask 2021.9.0
easydict 1.9
enum34 1.1.10
horovod 0.20.0
Flask 1.1.1
grpcio 1.40.0
gunicorn 20.1.0
idna 3.2
tensorboard 2.1.1
imageio 2.9.0
imgaug 0.4.0
lxml 4.6.3
matplotlib 3.4.3
tensorflow-gpu 2.1.0
tensorboardX 2.0
numba 0.47.0
numpy 1.17.0
opencv-python 4.1.2.30
toml 0.10.2
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

protobuf 3.17.3
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
requests 2.26.0
scikit-image 0.18.3
...

● Earlier versions: none

Engine Version 2: horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

● Image address: swr.{region}.myhuaweicloud.com/aip/horovod_pytorch:train-
horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20210912152543-1e0838d

● Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● cuda: 11.1.1
● cudnn: 8.0.5.39
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

horovod-0.22.1-pytorch-1.8.0/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

horovod-0.22.1-pytorch-1.8.0/lib/python3.7/site-packages
● The versions of some third-party packages:

Cython 0.27.3
dask 2021.9.0
easydict 1.9
enum34 1.1.10
horovod 0.22.1
Flask 1.1.1
grpcio 1.40.0
gunicorn 20.1.0
idna 3.2
mmcv 1.2.7
imageio 2.9.0
imgaug 0.4.0
lxml 4.6.3
matplotlib 3.4.3
torch 1.8.0
tensorboardX 2.0
numba 0.47.0
numpy 1.17.0
opencv-python 4.1.2.30
torchtext 0.5.0
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
protobuf 3.17.3
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
requests 2.26.0
scikit-image 0.18.3
torchvision 0.9.0
...

● Earlier versions: none

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

2.2.5 Training Base Image (MPI)
This section describes preset mindspore_1.3.0 images.

Engine Version: mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64
● Image address: swr.{region}.myhuaweicloud.com/aip/mindspore_1_3_0:train-

mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-
roma-20211104202338-f258e59

● Image creation time: 20211104202338(yyyy-mm-dd-hh-mm-ss)

● Image system version: Ubuntu 18.04.4 LTS

● cuda: 10.1.243

● cudnn: 7.6.5.32

● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/
MindSpore-1.3.0-gpu/bin/python, python 3.7.10

● Third-party package installation path: /home/ma-user/anaconda3/envs/
MindSpore-1.3.0-gpu/lib/python3.7/site-packages

● The versions of some third-party packages:
requests 2.26.0
dask 2021.9.0
easydict 1.9
enum34 1.1.10
mindspore-gpu 1.3.0
Flask 1.1.1
grpcio 1.41.1
gunicorn 20.1.0
idna 3.3
PyYAML 5.1
imageio 2.10.1
imgaug 0.4.0
lxml 4.6.4
matplotlib 3.4.2
psutil 5.8.0
scikit-image 0.18.3
numba 0.47.0
numpy 1.17.0
opencv-python 4.5.2.54
tifffile 2021.11.2
pandas 1.1.5
Pillow 8.4.0
pip 21.0.1
protobuf 3.17.3
scikit-learn 0.22.1
...

● Earlier versions: none

2.2.6 Starting Training with a Preset Image

2.2.6.1 PyTorch

ModelArts provides multiple AI frameworks for different engines. When you use
these engines for model training, the boot commands during training need to be
adapted accordingly. This section introduces how to make adaptions to the
PyTorch engine.

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

PyTorch Startup Principle
Specifications and number of nodes

In this case, GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB is used as
an example to describe how to allocate ModelArts resources for single-node and
distributed jobs.

For a single-node job (running on only one node), ModelArts starts a training
container that exclusively uses the resources on the node.

For a distributed job (running on more than one node), there are as many workers
as the nodes that are selected during job creation. Each worker is allocated with
the compute resources of the selected specification. For example, there are 2
compute nodes, two workers will be started, and each worker owns the compute
resources of GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB.

Network communication

● For a single-node job, no network communication is required.
● For a distributed job, network communications are required in nodes and

between nodes.

In nodes

NVLink and shared memory are used for communication.

Between nodes

If there is more than one compute node, PyTorch distributed training will be
started. The following figure shows the network communications between workers
in PyTorch distributed training. Workers can communicate with each other using
the container network and a 100-Gbit/s InfiniBand or RoCE NIC. RoCE NICs are
described specifically for certain specifications. The containers can communicate
through DNS domain names, which is suitable for small-scale point-to-point
communication that requires average network performance. The InfiniBand and
RoCE NICs are suitable for distributed training jobs using collective communication
that require high-performance network.

Figure 2-1 Network communications for distributed training

Boot Commands
The training service uses the default python interpreter in the job image to start
the training script. To obtain the python interpreter, run the which python
command. The working directory during startup is /home/ma-user/user-job-dir/
<The code directory name>, which is the directory returned by running pwd or
os.getcwd() in python.

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

● Boot command for single-card single-node
python <Relative path of the startup file> <Job parameters>

– Relative path of the startup file: path of the startup file relative to /
home/ma-user/user-job-dir/<The code directory name>

– Job parameters: parameters configured for a training job

Figure 2-2 Creating a training job

Configure the parameters by referring to the above figure. Then, run the
following command on the console background:
python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --epochs 5

● Boot command for multi-cards single-node
python <Relative path of the startup file> --init_method "tcp://${MA_VJ_NAME}-$
{MA_TASK_NAME}-0.${MA_VJ_NAME}:${port}" <Job parameters>

– Relative path of the startup file: path of the startup file relative to /
home/ma-user/user-job-dir/<The code directory name>

– ${MA_VJ_NAME}-${MA_TASK_NAME}-0.${MA_VJ_NAME}: domain name
of the container where worker-0 is located. For details, see Default
environment variables.

– port: default communication port of the container where worker-0 is
located

– Job parameters: parameters configured for a training job

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html

Figure 2-3 Creating a training job

Configure the parameters by referring to the above figure. Then, run the
following command on the console background:
python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --init_method "tcp://$
{MA_VJ_NAME}-${MA_TASK_NAME}-0.${MA_VJ_NAME}:${port}" --epochs 5

● Boot command for multi-cards multi-nodes
python <Relative path of the startup file> --init_method "tcp://${MA_VJ_NAME}-$
{MA_TASK_NAME}-0.${MA_VJ_NAME}:${port}" --rank <rank_id> --world_size <node_num> <Job
parameters>

– Relative path of the startup file: path of the startup file relative to /
home/ma-user/user-job-dir/<The code directory name>

– ${MA_VJ_NAME}-${MA_TASK_NAME}-0.${MA_VJ_NAME}: domain name
of the container where worker-0 is located. For details, see Default
environment variables.

– port: default communication port of the container where worker-0 is
located

– rank: worker serial number
– node_num: number of workers
– Job parameters: parameters configured for a training job

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html

Figure 2-4 Creating a training job

Configure the parameters by referring to the above figure. Then, run the
following command on the console background:
python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --init_method "tcp://$
{MA_VJ_NAME}-${MA_TASK_NAME}-0.${MA_VJ_NAME}:${port}" --rank "${rank_id}" --world_size "$
{node_num}" --epochs 5

2.2.6.2 TensorFlow
ModelArts provides multiple AI frameworks for different engines. When you use
these engines for model training, the boot commands during training need to be
adapted accordingly. This section introduces how to make adaptions to the
TensorFlow engine.

TensorFlow Startup Principle
Specifications and number of nodes

In this case, GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB is used as
an example to describe how to allocate ModelArts resources for single-node and
distributed jobs.

For a single-node job (running on only one node), ModelArts starts a training
container that exclusively uses the resources on the node.

For a distributed job (running on more than one node), ModelArts starts a
parameter server (PS) and a worker on the same node. The PS owns the compute
resources of CPU: 36 cores | Memory: 256 GB, and the worker owns GPU: 8
xNVIDIA-V100 | CPU: 36 cores | Memory: 256 GB.

Only CPU and memory resources are allocated to a PS, while a worker can also
own acceleration cards (except for pure CPU specifications). In this example, each
worker owns eight NVIDIA V100 acceleration cards. If a PS and a worker are
started on the same node, the disk resources are shared by both parties.

Network communication

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

● For a single-node job, no network communication is required.
● For a distributed job, network communications are required in nodes and

between nodes.

In nodes

A PS and a worker can communicate in nodes through a container network or
host network.

● A container network is used when you run a training job on nodes using
shared resources.

● When you run a training job on nodes using a dedicated pool, the host
network is used if the node is configured with RoCE NICs, and the container
network is used if the node is configured with InfiniBand NICs.

Between nodes

For a distributed job, a PS and a worker can communicate between nodes.
ModelArts provides you with InfiniBand and RoCE NICs with a bandwidth of up to
100 Gbit/s.

Boot Commands
By default, the training service uses the python interpreter in the job image to
start up the training script. To obtain the python interpreter, run the which
python command. The working directory during startup is /home/ma-user/user-
job-dir/<The code directory name>, which is the directory returned by running
pwd or os.getcwd() in python.

● Boot command for single-card single-node
python <Relative path of the startup file> <Job parameters>

– Relative path of the startup file: path of the startup file relative to /
home/ma-user/user-job-dir/<The code directory name>

– Job parameters: running parameters configured for a training job

Figure 2-5 Creating a training job

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Configure the parameters by referring to the above figure. Then, run the
following command on the console background:
python /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --epochs 5

● Boot command for distributed jobs
python --task_index ${VC_TASK_INDEX} --PS_hosts ${TF_PS_HOSTS} --worker_hosts $
{TF_WORKER_HOSTS} --job_name ${MA_TASK_NAME} <Relative path of the startup file> <Job
parameters>

– VC_TASK_INDEX: task serial number, for example, 0/1/2.
– TF_PS_HOSTS: address array of PS nodes, for example, [xx-

PS-0.xx:TCP_PORT,xx-PS-1.xx:TCP_PORT]. The value of TCP_PORT is a
random port ranging from 5,000 to 10,000.

– TF_WORKER_HOSTS: address array of worker nodes, for example, [xx-
worker-0.xx:TCP_PORT,xx-worker-1.xx:TCP_PORT]. The value of
TCP_PORT is a random port ranging from 5,000 to 10,000.

– MA_TASK_NAME: task name, which can be PS or worker.
– Relative path of the startup file: path of the startup file relative to /

home/ma-user/user-job-dir/<The code directory name>
– Job parameters: running parameters configured for a training job

Figure 2-6 Creating a training job

Configure the parameters by referring to the above figure. Then, run the
following command on the console background:
python --task_index "$VC_TASK_INDEX" --PS_hosts "$TF_PS_HOSTS" --worker_hosts
"$TF_WORKER_HOSTS" --job_name "$MA_TASK_NAME"
 /home/ma-user/modelarts/user-job-dir/gpu-train/train.py --epochs 5

2.2.6.3 Horovod/MPI/MindSpore-GPU
ModelArts provides multiple AI frameworks for different engines. When you use
these engines for model training, the algorithm codes during training need to be
adapted accordingly. This section introduces how to make adaptions to the
Horovod/MPI/MindSpore-GPU engine.

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Horovod/MPI/MindSpore-GPU Startup Principle

Specifications and number of nodes

In this case, GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB is used as
an example to describe how to allocate ModelArts resources for single-node and
distributed jobs.

For a single-node job (running on only one node), ModelArts starts a training
container that exclusively uses the resources on the node.

For a distributed job (running on more than one node), there are as many workers
as the nodes that are selected during job creation. Each worker is allocated with
the compute resources of the selected specification. For example, if there are 2
compute nodes, two workers will be started, and each worker owns the compute
resources of GPU: 8 × NVIDIA-V100 | CPU: 72 cores | Memory: 512 GB.

Network communication

● For a single-node job, no network communication is required.
● For a distributed job, network communications are required in nodes and

between nodes.

In nodes

NVLink and shared memory are used for communication.

Between nodes

If there is more than one compute node, PyTorch distributed training will be
started. The following figure shows the network communications between workers
in PyTorch distributed training. Workers can communicate with each other using
the container network and a 100-Gbit/s InfiniBand or RoCE NIC. RoCE NICs are
described specifically for certain specifications. The containers can communicate
through DNS domain names, which is suitable for small-scale point-to-point
communication that requires average network performance. The InfiniBand and
RoCE NICs are suitable for distributed training jobs using collective communication
that require high-performance network.

Figure 2-7 Network communications for distributed training

Boot Commands

By default, the training service uses the python interpreter in the job image to
start up the training script. To obtain the python interpreter, run the which
python command. The working directory during startup is /home/ma-user/user-

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

job-dir/<The code directory name>, which is the directory returned by running
pwd or os.getcwd() in python.

Boot commands

mpirun \
-np ${OPENMPI_NP} \
-hostfile ${OPENMPI_HOST_FILE_PATH} \
-mca plm_rsh_args "-p ${SSHD_PORT}" \
-tune ${TUNE_ENV_FILE} \
${OPENMPI_BIND_ARGS} \
${OPENMPI_X_ARGS} \
${OPENMPI_MCA_ARGS} \
${OPENMPI_EXTRA_ARGS} \
python <Relative path of the startup file> <Job parameters>

● OPENMPI_NP: number of processes started by mpirun. The default value is
the number of GPUs multiplied by the number of nodes. Do not modify this
value.

● OPENMPI_HOST_FILE_PATH: value of hostfile. Do not modify this value.
● SSHD_PORT: Port for SSH login. Do not modify this value.
● TUNE_ENV_FILE: environment variables of worker-0. Broadcast the following

environment variables to other worker nodes of the current training job.
– env with the MA_ prefix
– env with the SHARED_ prefix
– env with the S3_ prefix
– env of PATH
– env with the VC_WORKER_ prefix
– env with the SCC prefix
– env with the CRED prefix

env|grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED'|grep -v '=$'> $
{TUNE_ENV_FILE}

● OPENMPI_BIND_ARGS: process pinning with the mpirun cpu command. The
default settings are as follows:
OPENMPI_BIND_ARGS="-bind-to none -map-by slot"

● OPENMPI_X_ARGS: -x parameters of the mpirun command. The default
settings are as follows:
OPENMPI_X_ARGS="-x LD_LIBRARY_PATH -x HOROVOD_MPI_THREADS_DISABLE=1 -x
NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=ib0,bond0,eth0 -x
NCCL_SOCKET_FAMILY=AF_INET -x NCCL_IB_DISABLE=0"

● OPENMPI_X_ARGS: -mca parameters of the mpirun command. The default
settings are as follows:
OPENMPI_MCA_ARGS="-mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true"

● OPENMPI_EXTRA_ARGS: parameters passed to mpirun. The default value is
empty.

● Relative path of the startup file: path of the startup file relative to /
home/ma-user/user-job-dir/<The code directory name>

● Job parameters: running parameters configured for a training job

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Figure 2-8 Creating a training job

Configure the parameters by referring to the above figure. Then, run the following
command on the console background:

mpirun \
-np ${np} \
-hostfile ${OPENMPI_HOST_FILE_PATH} \
-mca plm_rsh_args "-p ${SSHD_PORT}" \
-tune ${TUNE_ENV_FILE} \
${OPENMPI_BIND_ARGS} \
${OPENMPI_X_ARGS} \
${OPENMPI_MCA_ARGS} \
${OPENMPI_EXTRA_ARGS} \
python /home/ma-user/user-job-dir/gpu-train/train.py --datasets=obs://modelarts-train-test/gpu-train/
data_url_0

NO TE

If you are using a Horovod, MPI, or MindSpore-GPU engine for model training, the boot
commands for single-node jobs and distributed jobs are the same.

2.3 Inference Base Images

2.3.1 Available Inference Base Images
ModelArts inference provides a series of base images. You can create custom
images based on these base images to deploy inference services.

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

x86 (CPU/GPU)

Table 2-14 TensorFlow

AI Engine
Version

Runtime
Environme
nt

URI

2.1.0 CPU
GPU (CUDA
10.1)

swr.{region_id}.myhuaweicloud.com/atelier/
tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64-20221121111529-d65d817

1.15.5 CPU
GPU (CUDA
11.4)

swr.{region_id}.myhuaweicloud.com/aip/
tensorflow_1_15:tensorflow_1.15.5-cuda_11.4-py_3.8-
ubuntu_20.04-x86_64-20220524162601-50d6a18

2.6.0 CPU
GPU (CUDA
11.2)

swr.{region_id}.myhuaweicloud.com/aip/
tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-
ubuntu_18.04-x86_64-20220524162601-50d6a18

Table 2-15 PyTorch

AI Engine
Version

Runtime
Environme
nt

URI

1.8.0 CPU
GPU
(CUDA
10.2)

swr.{region_id}.myhuaweicloud.com/atelier/
pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64-20221118143845-d65d817

1.8.2 CPU
GPU
(CUDA
11.1)

swr.{region_id}.myhuaweicloud.com/aip/
pytorch_1_8:pytorch_1.8.2-cuda_11.1-py_3.7-
ubuntu_18.04-x86_64-20220524162601-50d6a18

Table 2-16 MindSpore

AI
Engine
Version

Runtime
Environme
nt

URI

1.7.0 CPU swr.{region_id}.myhuaweicloud.com/atelier/
mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-
ubuntu_18.04-x86_64-20220702120711-8590b76

1.7.0 GPU (CUDA
10.1)

swr.{region_id}.myhuaweicloud.com/atelier/
mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64-20220702120711-8590b76

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

AI
Engine
Version

Runtime
Environme
nt

URI

1.7.0 GPU (CUDA
11.1)

swr.{region_id}.myhuaweicloud.com/atelier/
mindspore_1_7_0:mindspore_1.7.0-cuda_11.1-py_3.7-
ubuntu_18.04-x86_64-20220702120711-8590b76

2.3.2 TensorFlow (CPU/GPU)-powered Inference Base Images
ModelArts provides the following inference base images powered by TensorFlow
(CPU/GPU):

● Engine Version 1: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Engine Version 2: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-

x86_64
● Engine Version 3: tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/atelier/

tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20221121111529-d65d817

● Image creation time: 20220713110657 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

TensorFlow-2.1/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-2.1/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.29.21
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
h5py 3.7.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.1
matplotlib 3.5.1
moxing-framework 2.1.0.5d9c87c8
numpy 1.19.5
opencv-python 4.1.2.30
pandas 1.1.5
Pillow 9.2.0
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

sklearn 0.0
tensorboard 2.1.1
tensorboardX 2.0
tensorflow 2.1.0
tensorflow-estimator 2.1.0
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

zlib1g-dev
...

Engine Version 2: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/aip/

tensorflow_1_15:tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-
x86_64-20220524162601-50d6a18

● Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 20.04.4 LTS
● CUDA: 11.4.3
● cuDNN: 8.2.4.15
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

TensorFlow-1.15.5/bin/python, python 3.8.13
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-1.15.5/lib/python3.8/site-packages
● Certain pip installation packages:

Cython 0.29.21
psutil 5.9.0
matplotlib 3.5.1
protobuf 3.20.1
tensorflow 1.15.5+nv
Flask 2.0.1
grpcio 1.46.1
gunicorn 20.1.0
Pillow 9.0.1
tensorboard 1.15.0
PyYAML 6.0
pip 22.0.4
lxml 4.7.1
numpy 1.18.5
tensorflow-estimator 1.15.1
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 3: tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/aip/

tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-
x86_64-20220524162601-50d6a18

● Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 11.2.0
● cuDNN: 8.1.1.33
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

TensorFlow-2.6.0/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-2.6.0/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.29.21
requests 2.27.1
easydict 1.9
tensorboardX 2.0
tensorflow 2.6.0
Flask 2.0.1
grpcio 1.46.1
gunicorn 20.1.0
idna 3.3
tensorflow-estimator 2.9.0
pandas 1.1.5
Pillow 9.0.1
lxml 4.8.0
matplotlib 3.5.1

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
numpy 1.17.0
opencv-python 4.1.2.30
protobuf 3.20.1
pip 21.2.2
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

zlib1g-dev
...

2.3.3 PyTorch (CPU/GPU)-powered Inference Base Images
ModelArts provides the following inference base images powered by PyTorch
(CPU/GPU):

● Engine Version 1: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
● Engine Version 2: pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region_id}.myhuaweicloud.com/atelier/

pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20221118143845-d65d817

● Image creation time: 20220713110657 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.2.89
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

PyTorch-1.8/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

PyTorch-1.8/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.27.3
easydict 1.9
Flask 2.0.1
fonttools 4.34.4
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.1
matplotlib 3.5.1
mmcv 1.2.7
moxing-framework 2.1.0.5d9c87c8
numpy 1.19.5
opencv-python 4.1.2.30
pandas 1.1.5
Pillow 9.2.0
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
sklearn 0.0
tensorboard 2.1.1
tensorboardX 2.0
torch 1.8.0
torchtext 0.5.0
torchvision 0.9.0
tornado 6.2
tqdm 4.64.0
traitlets 5.3.0
typing_extensions 4.3.0
urllib3 1.26.10
watchdog 2.0.0
wcwidth 0.2.5

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Werkzeug 2.1.2
wheel 0.37.1
yapf 0.32.0
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Engine Version 2: pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/aip/pytorch_1_8:pytorch_1.8.2-

cuda_11.1-py_3.7-ubuntu_18.04-x86_64-20220524162601-50d6a18
● Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 11.1.1
● cuDNN: 8.0.5.39
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

PyTorch-1.8.2/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

PyTorch-1.8.2/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.27.3
mmcv 1.2.7
easydict 1.9
tensorboardX 2.0
torch 1.8.2+cu111
Flask 2.0.1
pandas 1.1.5
gunicorn 20.1.0
PyYAML 5.1
torchaudio 0.8.2
Pillow 9.0.1
psutil 5.8.0
lxml 4.8.0
matplotlib 3.5.1
torchvision 0.9.2+cu111
pip 21.2.2
protobuf 3.20.1
numpy 1.17.0
opencv-python 4.1.2.30
scikit-learn 0.22.1
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

2.3.4 MindSpore (CPU/GPU)-powered Inference Base Images
ModelArts provides the following inference base images powered by MindSpore
(CPU/GPU):

● Engine Version 1: mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64
● Engine Version 2: mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Engine Version 3: mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/atelier/

mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-
x86_64-20220702120711-8590b76

● Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

MindSpore/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore/lib/python3.7/site-packages
● Certain pip installation packages:

cycler 0.11.0
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.0
matplotlib 3.5.1
mindinsight 1.7.0
mindspore 1.7.0
mindvision 0.1.0
moxing-framework 2.1.0.5d9c87c8
numpy 1.17.0
opencv-contrib-python-headless 4.6.0.66
opencv-python-headless 4.6.0.66
pandas 1.1.5
Pillow 9.1.1
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
setuptools 62.6.0
sklearn 0.0
tensorboardX 2.0
threadpoolctl 3.1.0
tomli 2.0.1
tornado 6.1
tqdm 4.64.0
traitlets 5.3.0
treelib 1.6.1
urllib3 1.26.9
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 2: mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/atelier/

mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20220702120711-8590b76

● Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

MindSpore/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore/lib/python3.7/site-packages
● Certain pip installation packages:

cycler 0.11.0
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.0
matplotlib 3.5.1
mindinsight 1.7.0
mindspore 1.7.0
mindvision 0.1.0
moxing-framework 2.1.0.5d9c87c8
numpy 1.17.0
opencv-contrib-python-headless 4.6.0.66
opencv-python-headless 4.6.0.66
pandas 1.1.5
Pillow 9.1.1
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
setuptools 62.6.0
sklearn 0.0
tensorboardX 2.0
threadpoolctl 3.1.0
tomli 2.0.1
tornado 6.1
tqdm 4.64.0
traitlets 5.3.0
treelib 1.6.1
urllib3 1.26.9
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 3: mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-x86_64
● Image path: swr.{region}.myhuaweicloud.com/atelier/

mindspore_1_7_0:mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-
x86_64-20220702120711-8590b76

● Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 11.1.1
● cuDNN: 8.0.5.39
● Path and version of the Python interpreter: /home/ma-user/anaconda3/envs/

MindSpore/bin/python, python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore/lib/python3.7/site-packages
● Certain pip installation packages:

cycler 0.11.0
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.0
matplotlib 3.5.1
mindinsight 1.7.0
mindspore 1.7.0
mindvision 0.1.0
moxing-framework 2.1.0.5d9c87c8
numpy 1.17.0
opencv-contrib-python-headless 4.6.0.66
opencv-python-headless 4.6.0.66
pandas 1.1.5
Pillow 9.1.1
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
setuptools 62.6.0
sklearn 0.0
tensorboardX 2.0
threadpoolctl 3.1.0
tomli 2.0.1
tornado 6.1
tqdm 4.64.0
traitlets 5.3.0
treelib 1.6.1
urllib3 1.26.9
wheel 0.37.1
zipp 3.8.0
...

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

ModelArts
Image Management 2 Using a Preset Image

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

3 Using Custom Images in Notebook
Instances

3.1 Registering an Image in ModelArts
After a custom image is created, register it on the ModelArts Image Management
page before using it in notebook.

NO TE

Only the sub-users (IAM users) of the account can register and use the SWR images if the
image type is Private.
Other users can register and use SWR images only when the image type is Public.

1. Log in to the ModelArts management console and choose Image
Management. Then, click Register.

2. Configure parameters and click Register.
– SWR Source: Select a built image as the image source. You can copy the

complete SWR address or click to select the target image for
registration.

Figure 3-1 Selecting an image source

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

– Architecture and Type: Configure them based on the actual framework
of the custom image.

3. View the registered image on the Image Management page.

Figure 3-2 Image list

Creating a Notebook Instance
Click the image name. On the image details page that appears, click Create
Notebook. The page for creating a notebook instance using this image is
displayed.

Figure 3-3 Image details page

Synchronizing an Image
After the image fault is rectified, go to the image details page. Click Sync in the
Operation column to refresh the image status.

3.2 Creating a Custom Image
You can create a custom image in any of the following ways:

● Method 1: Use a preset image of notebook instances to create a development
environment instance. Then, install and configure dependencies in the
environment. After the configuration, use the image saving function provided
by the development environment to save the running instance as a custom
container image. For details, see Saving a Notebook Instance as a Custom
Image.

● Method 2: Use ModelArts base images and image creation templates to write
a Dockerfile and create your own image on a notebook instance. Then,
register the image to create a new development environment based on your
needs. For details, see Creating and Using a Custom Image in Notebook.

● Method 3: Use ModelArts base images or third-party images to write a
Dockerfile on an ECS and to reconstruct the ModelArts base images or third-
party images. This allows you to customize Docker images that meet
ModelArts requirements and push the images to SWR. For details, see
Creating a Custom Image on an ECS and Using It in Notebook.

3.3 Saving a Notebook Instance as a Custom Image

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

3.3.1 Saving a Notebook Environment Image
To save a notebook environment image, do as follows: Create a notebook instance
using a preset image, install custom software and dependencies on the base
image, and save the running instance as a container image.

In the saved image, the installed dependencies are retained. The data stored in
home/ma-user/work for persistent storage will not be stored. When you use VS
Code for remote development, the plug-ins installed on the Server are retained.

NO TE

Images stored in a notebook instance cannot be larger than 35 GB and there cannot be
more than 125 image layers. Otherwise, the image cannot be saved.
If error "The container size (xx) is greater than the threshold (25G)" is reported when an
image is saved, handle the error by referring to What Do I Do If Error "The container size
(xG) is greater than the threshold (25G)" Is Displayed When I Save an Image?.

Prerequisites
The notebook instance is in Running state.

Saving an Image
1. Log in to the ModelArts management console and choose DevEnviron >

Notebook in the navigation pane on the left to switch to notebook of the
new version.

2. In the notebook instance list, select the target notebook instance and choose
Save Image from the More drop-down list in the Operation column. The
Save Image dialog box is displayed.

Figure 3-4 Save Image

3. In the Save Image dialog box, configure parameters. Click OK to save the
image.

Choose an organization from the Organization drop-down list. If no
organization is available, click Create on the right to create one.
Users in an organization can share all images in the organization.

4. The image will be saved as a snapshot, and it will take about 5 minutes.
During this period of time, do not perform any operations on the instance.

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0268.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0268.html

Figure 3-5 Saving as a snapshot

NO TICE

The time required for saving an image as a snapshot will be counted in the
instance running duration. If the instance running duration expires before the
snapshot is saved, saving the image will fail.

5. After the image is saved, the instance status changes to Running. View the
image on the Image Management page.

6. Click the name of the image to view its details.

3.3.2 Using a Custom Image to Create a Notebook Instance
The images saved from a notebook instance can be viewed on the Image
Management page. You can use these images to create new notebook instances,
which inherit the software configurations of the original notebook instances.

You can use either of the following methods:

Method 1: On the Create Notebook page, click Private Image and select the
saved image.

Figure 3-6 Selecting a custom image to create a notebook instance

Method 2: On the Image Management page, click the target image to access its
details page. Then, click Create Notebook.

3.4 Creating and Using a Custom Image in Notebook

3.4.1 Application Scenarios and Process
If preset images cannot meet your service requirements, you can create container
images based on the preset images for development and training.

Generally, you will need to reconstruct the ModelArts development environment,
for example, by installing, upgrading, or uninstalling some packages. However, the
root permission is required when certain packages are installed or upgraded. The
running notebook instance does not have the root permission. As a result, you

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

need to install the software that requires the root permission in the notebook
instance, which is currently unavailable in the preset development environment.

You need to write a Dockerfile based on a preset public image to customize your
image. Then, debug the image so that it can be used in ModelArts. At last, register
the image with ModelArts so that it can be used to create development
environments to meet your service requirements.

This example shows how to use ma-cli commands in ModelArts CLI to create and
register a custom image for AI development with a PyTorch base image. For
details, see ma-cli Image Building Command. The following figure shows the
whole process.

Figure 3-7 Creating an image

3.4.2 Step 1 Creating a Custom Image
This section shows you how to create an image by loading an image creation
template and writing a Dockerfile. Ensure that you have created the development
environment and opened a terminal on the Notebook page. For details about
Dockerfiles, see Dockerfile reference.

Step 1 Configure authentication information, specify a profile, and enter the account
information as prompted. For more information about authentication, see ma-cli
Authentication.
ma-cli configure --auth PWD -P xxx

Step 2 Run env|grep -i CURRENT_IMAGE_NAME to query the image used by the current
instance.

Step 3 Create an image.

1. Obtain the SWR address of the base image.
CURRENT_IMAGE_NAME=swr.ap-southeast-1.myhuaweicloud.com/atelier/
pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20220926104358-041ba2e

2. Load an image creation template.
Run the ma-cli image get-template command to query the image template.

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://support.huaweicloud.com/intl/en-us/devtool-modelarts/devtool-modelarts_0309.html
https://docs.docker.com/engine/reference/builder/
https://support.huaweicloud.com/intl/en-us/devtool-modelarts/devtool-modelarts_0307.html
https://support.huaweicloud.com/intl/en-us/devtool-modelarts/devtool-modelarts_0307.html

Run the ma-cli image add-template command to load the image template
to the specified folder. The default path is where the current command is
located. For example, load the upgrade_current_notebook_apt_packages
image creation template.
ma-cli image add-template upgrade_current_notebook_apt_packages

3. Modify a Dockerfile.
The Dockerfile in this example is modified based on the base PyTorch image
pytorch1.8-cuda10.2-cudnn7-ubuntu18.04, the image template
upgrade_current_notebook_apt_packages is loaded, and GCC and G++ are
upgraded.
After the image template is loaded, the Dockerfile will be automatically
loaded in .ma/upgrade_current_notebook_apt_packages. The content is as
follows and you can modify it based on your needs.
FROM swr.ap-southeast-1.myhuaweicloud.com/atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64-20220926104358-041ba2e

Set proxy to download internet resources
ENV HTTP_PROXY=http://proxy.modelarts.com:80 \
 http_proxy=http://proxy.modelarts.com:80 \
 HTTPS_PROXY=http://proxy.modelarts.com:80 \
 https_proxy=http://proxy.modelarts.com:80

USER root

Config apt source which can accelerate the apt package download speed. Also install ffmpeg and
gcc-8 in root mode
RUN cp -f /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 apt update && \
 apt -y install ffmpeg && \
 apt install -y --no-install-recommends gcc-8 g++-8 && apt-get autoremove -y && \
 update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80 --slave /usr/bin/g++ g++ /usr/bin/g+
+-8

ModelArts requires ma-user as the default user to start image
USER ma-user

4. Build an image.
Run the ma-cli image build command to build an image with the Dockerfile.
For more information, see Creating an Image in ModelArts Notebook.
ma-cli image build .ma/upgrade_current_notebook_apt_packages/Dockerfile -swr notebook-test/
my_image:0.0.1 -P XXX

The Dockerfile is stored in .ma/upgrade_current_notebook_apt_package/
Dockerfile and the new image is stored in notebook-test/my_image:0.0.1 in
SWR. XXX indicates the profile specified for authentication.

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

https://support.huaweicloud.com/intl/en-us/devtool-modelarts/devtool-modelarts_0313.html

----End

3.4.3 Step 2 Registering a New Image
After an image is debugged, register it with ModelArts image management so
that the image can be used in ModelArts.

Use either of the following methods to register the image with ModelArts:

● Method 1: Run the ma-cli image register command to register an image.
Then, the information of the registered image is returned, including image ID
and name, as shown in the following figure. For more information, see
Registering SWR Images with ModelArts Image Management.
ma-cli image register --swr-path=swr.ap-southeast-1.myhuaweicloud.com/notebook-test/
my_image:0.0.1 -P XXX

Figure 3-8 Registered image

● Method 2: Register the image on the ModelArts management console.
Log in to the ModelArts management console. In the navigation pane on the
left, select Image Management. The Image Management page is displayed.

Click Register. Paste the complete SWR address, or click to select a
private image from SWR for registration, as shown in Figure 3-9.
Select the architecture and type based on the site requirements. The
architecture and type must be the same as those of the image source.

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://support.huaweicloud.com/intl/en-us/devtool-modelarts/devtool-modelarts_0316.html

Figure 3-9 Selecting an image

3.4.4 Step 3 Using a New Image to Create a Development
Environment

Procedure
After an image is registered, it is available for development environment creation.
You can log in to the ModelArts management console, choose DevEnviron >
Notebook, and select the image during creation.

3.5 Creating a Custom Image on an ECS and Using It in
Notebook

3.5.1 Application Scenarios and Process
Generally, you will need to reconstruct the ModelArts development environment,
for example, by installing, upgrading, or uninstalling some packages. However, the
root permission is required when certain packages are installed or upgraded. The
running notebook instance does not have the root permission. As a result, you
need to install the software that requires the root permission in the notebook
instance, which is currently unavailable in the preset development environment.

You can write a Dockerfile based on a preset base image or third-party image to
customize your image. Then, you can register the image to create a new
development environment based on your needs.

This section describes how to install PyTorch 1.8, FFmpeg 3, and GCC 8 on an
Ubuntu image to create a new AI development environment.

The following figure shows the whole process.

Figure 3-10 Creating and debugging an image

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

3.5.2 Step 1 Preparing a Docker Server and Configuring an
Environment

Prepare a server with Docker enabled. If no such a server is available, create an
ECS, buy an EIP, and install required software on it. Subsequent image building,
debugging, and registration are all performed on this server.

ModelArts provides Ubuntu scripts for you to install Docker easier.

NO TE

The operations on the local Linux server are the same as those on the ECS. For details, see
this case.

Creating an ECS
● Log in to the ECS console and click Buy ECS. Select a public image (an

Ubuntu 18.04 image is recommended) and set the system disk to 100 GiB. For
more details, see Purchasing and Logging In to a Linux ECS.

Figure 3-11 Selecting an image and a disk

● Purchase an EIP and bind it to the ECS. For details, see Configure Network.

Configuring an ECS
1. Run the following command on the Docker ECS to download the installation

script:
wget https://cnnorth4-modelarts-sdk.obs.cn-north-4.myhuaweicloud.com/modelarts/custom-image-
build/install_on_ubuntu1804.sh

NO TE

Only Ubuntu scripts are supported.

2. Run the following command on the Docker ECS to configure the environment:
bash install_on_ubuntu1804.sh

Figure 3-12 Configured

source /etc/profile

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html#section3

The installation script is executed to:

a. Install Docker.

b. If the Docker ECS runs on GPUs, install nvidia-docker2 to mount the
GPUs to the Docker container.

3.5.3 Step 2 Creating a Custom Image
This section describes how to edit a Dockerfile, use it to create an image, and use
the created image to create a notebook instance. For details about how to edit a
Dockerfile, see Dockerfile reference.

Prerequisites

You have prepared a Docker server by referring to Step 1 Preparing a Docker
Server and Configuring an Environment.

Querying Base Images (Skip This Step for Third-Party Images)

For details about ModelArts base images, see Notebook Base Image List. Check
the image URL in the corresponding section based on the engine type of the
preset image.

Creating an Image
1. Access SWR.

a. Log in to the SWR console.

b. In the navigation pane on the left, choose Dashboard, and click
Generate Login Command in the upper right corner. On the displayed
page, copy the login command.

Figure 3-13 Obtaining the login command

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

https://docs.docker.com/engine/reference/builder/

NO TE

● The validity period of the generated login command is 24 hours. To obtain a
long-term valid login command, see Obtaining a Login Command with
Long-Term Validity. After you obtain a long-term valid login command, your
temporary login commands will still be valid as long as they are in their
validity periods.

● The domain name at the end of the login command is the image repository
address. Record the address for later use.

c. Run the login command on the machine where the container engine is
installed.

The message "Login Succeeded" will be displayed upon a successful login.

2. Pull a base image or third-party image. The following uses a third-party
image as an example.
docker pull swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/ubuntu:18.04 #Your organization
name and image

3. Compile a Dockerfile.
Run the vim command to create a Dockerfile. If a ModelArts base image is
used, see Dockerfile on a ModelArts Base Image for details about the
Dockerfile.
If a third-party image is used, add user ma-user whose UID is 1000 and user
group ma-group whose GID is 100. For details, see Dockerfile on a Non-
ModelArts Base Image.
In this case, PyTorch 1.8, FFmpeg 3, and GCC 8 will be installed on an Ubuntu
image to build an AI image.

4. Build an image.
Run the docker build command to build a new image from the Dockerfile.
The description of the command parameters are as follows:
– -t specifies the new image path, including region information,

organization name, image name, and version. Set this parameter based
on the real-life scenario. Use a complete SWR address for debugging and
registration.

– -f specifies the Dockerfile name. Set this parameter based on the real-life
scenario.

– . at the end specifies that the context is the current directory. Set this
parameter based on the real-life scenario.

docker build -t swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/pytorch_1_8:v1 -f Dockerfile .

Figure 3-14 Image created

Dockerfile on a ModelArts Base Image
Run the vim command to create a Dockerfile. If the base image is provided by
ModelArts, the content of the Dockerfile is as follows:

FROM swr.ap-southeast-1.myhuaweicloud.com/atelier/notebook2.0-pytorch-1.4-kernel-cp37:3.3.3-release-
v1-20220114

USER root

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

section1: config apt source
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak && \
 echo -e "deb http://repo.huaweicloud.com/ubuntu/ bionic main restricted\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic-updates main restricted\ndeb http://repo.huaweicloud.com/ubuntu/
bionic universe\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates universe\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates
multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-backports main restricted universe multiverse
\ndeb http://repo.huaweicloud.com/ubuntu bionic-security main restricted\ndeb http://
repo.huaweicloud.com/ubuntu bionic-security universe\ndeb http://repo.huaweicloud.com/ubuntu bionic-
security multiverse" > /etc/apt/sources.list && \
 apt-get update
section2: install ffmpeg and gcc
RUN apt-get -y install ffmpeg && \
 apt -y install gcc-8 g++-8 && \
 update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80 --slave /usr/bin/g++ g++ /usr/bin/g++-8
&& \
 rm $HOME/.pip/pip.conf
USER ma-user
section3: configure conda source and pip source
RUN echo -e "channels:\n - defaults\nshow_channel_urls: true\ndefault_channels:\n - https://
mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2\ncustom_channels:\n conda-forge: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
\n bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n menpo: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/
cloud\n pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n simpleitk: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud" > $HOME/.condarc && \
 echo -e "[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\n[install]\ntrusted-host = https://
pypi.tuna.tsinghua.edu.cn" > $HOME/.pip/pip.conf
section4: create a conda environment(only support python=3.7) and install pytorch1.8
RUN source /home/ma-user/anaconda3/bin/activate && \
 conda create -y --name pytorch_1_8 python=3.7 && \
 conda activate pytorch_1_8 && \
 pip install torch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 && \
 conda deactivate

Dockerfile on a Non-ModelArts Base Image
If a third-party image is used, add user ma-user whose UID is 1000 and user
group ma-group whose GID is 100 to the Dockerfile. If UID 1000 or GID 100 in
the base image has been used by another user or user group, delete the user or
user group. The user and user group have been added to the Dockerfile in this
case. You can directly use them.

NO TE

You only need to set the user ma-user whose UID is 1000 and the user group ma-group
whose GID is 100, and grant the read, write, and execute permissions on the target
directory to user ma-user.

Run the vim command to create a Dockerfile and add a third-party (non-
ModelArts) image as the base image, for example, ubuntu 18.04. The content of
the Dockerfile is as follows:

Replace it with the actual image version.
FROM ubuntu:18.04
Set the user ma-user whose UID is 1000 and the user group ma-group whose GID is 10
USER root
RUN default_user=$(getent passwd 1000 | awk -F ':' '{print $1}') || echo "uid: 1000 does not exist" && \
 default_group=$(getent group 100 | awk -F ':' '{print $1}') || echo "gid: 100 does not exist" && \
 if [! -z ${default_user}] && [${default_user} != "ma-user"]; then \
 userdel -r ${default_user}; \
 fi && \
 if [! -z ${default_group}] && [${default_group} != "ma-group"]; then \
 groupdel -f ${default_group}; \
 fi && \

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

 groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user && \
Grant the read, write, and execute permissions on the target directory to the user ma-user.
chmod -R 750 /home/ma-user

#Configure the APT source and install the ZIP and Wget tools (required for installing conda).
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak && \
 echo "deb http://repo.huaweicloud.com/ubuntu/ bionic main restricted\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic-updates main restricted\ndeb http://repo.huaweicloud.com/ubuntu/
bionic universe\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates universe\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates
multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-backports main restricted universe multiverse
\ndeb http://repo.huaweicloud.com/ubuntu bionic-security main restricted\ndeb http://
repo.huaweicloud.com/ubuntu bionic-security universe\ndeb http://repo.huaweicloud.com/ubuntu bionic-
security multivers e" > /etc/apt/sources.list && \
apt-get update && \
apt-get install -y zip wget

#Modifying the system Configuration of the image (required for creating the Conda environment)
RUN rm /bin/sh && ln -s /bin/bash /bin/sh

#Switch to user ma-user , download miniconda from the Tsinghua repository, and install miniconda in /
home/ma-user.
USER ma-user
RUN cd /home/ma-user/ && \
 wget --no-check-certificate https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.6.14-
Linux-x86_64.sh && \
 bash Miniconda3-4.6.14-Linux-x86_64.sh -b -p /home/ma-user/anaconda3 && \
 rm -rf Miniconda3-4.6.14-Linux-x86_64.sh

#Configure the conda and pip sources
RUN mkdir -p /home/ma-user/.pip && \
 echo -e "channels:\n - defaults\nshow_channel_urls: true\ndefault_channels:\n - https://
mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2" > /home/ma-user/.condarc && \
 echo -e "[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\n[install]\ntrusted-host = https://
pypi.tuna.tsinghua.edu.cn" > /home/ma-user/.pip/pip.conf

#Create the conda environment and install the Python third-party package. The ipykernel package is
mandatory for starting a kernel.
RUN source /home/ma-user/anaconda3/bin/activate && \
 conda create -y --name pytorch_1_8 python=3.7 && \
 conda activate pytorch_1_8 && \
 pip install torch==1.8.1 torchvision==0.9.1 && \
 pip install ipykernel==6.7.0 && \
 conda init bash && \
 conda deactivate

#Install FFmpeg and GCC
USER root
RUN apt-get -y install ffmpeg && \
 apt -y install gcc-8 g++-8

3.5.4 Step 3 Registering a New Image
After an image is debugged, register it with ModelArts image management so
that the image can be used in ModelArts.

1. Push the image to SWR.
Log in to SWR first. For details, see Log In to SWR. Run the following
command to push the image:
docker push swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/pytorch_1_8:v1

The image is then available on SWR.

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Figure 3-15 Pushing the image to SWR

2. Register an image.

Registering an Image on the ModelArts Console
Log in to the ModelArts console. In the navigation pane on the left, select
Image Management to access the image management page. Click Register.

Set SWR Source to the image pushed to SWR in Step 1. Click to select
an existing image you want to register, as shown in Figure 3-16.

NO TE

When you register a new image, ensure that the architecture and type are the same as
those of the image source. Otherwise, the creation fails.

Figure 3-16 Registering an image

3.5.5 Step 5 Creating and Starting a Development
Environment

Procedure
1. After the image is created, log in to the ModelArts console, go to the

notebook tab, and choose the image registered in Step 3 Registering a New
Image to create a development environment.

2. Go to the notebook list, click Open to start the created development
environment.

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Figure 3-17 Opening a development environment

3. Open a terminal to check the conda environment. For more information
about conda, see the official website.
Each kernel in the development environment is essentially a conda
environment installed in /home/ma-user/anaconda3/. Run the /home/ma-
user/anaconda3/bin/conda env list command to check the conda
environment.

Figure 3-18 Checking the conda environment

ModelArts
Image Management 3 Using Custom Images in Notebook Instances

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-conda

4 Using a Custom Image to Train Models
(Model Training)

4.1 Overview
The subscribed algorithms and preset images can be used in most training
scenarios. In certain scenarios, ModelArts allows you to create custom images to
train models.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts only after
they are uploaded to the Software Repository for Container (SWR).

You can use custom images for training on ModelArts in either of the following
ways:

● Using a preset image with customization
If you use a preset image to create a training job and you need to modify or
add some software dependencies based on the preset image, you can
customize the preset image. In this case, select a preset image and choose
Customize from the framework version drop-down list box.

● Using a custom image
You can create an image based on the ModelArts image specifications, select
your own image and configure the code directory (optional) and boot
command to create a training job.

NO TE

When you use a custom image to create a training job, the boot command must be
executed in the /home/ma-user directory. Otherwise, the training job may run
abnormally.

Using a Preset Image with Customization
The only difference between this method and creating a training job totally based
on a preset image is that you must select an image. You can create a custom
image based on a preset image.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Figure 4-1 Creating an algorithm using a preset image with customization

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables.
– PATH=${MA_HOME}/anaconda/bin:${PATH}
– LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
– PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:
– export MA_HOME=/home/ma-user; docker run --rm {image} $

{MA_HOME}/anaconda/bin/python -V
– docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

Using a Custom Image

Figure 4-2 Creating an algorithm using a custom image

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

For details about how to use custom images supported by training, see Using a
Custom Image to Create a CPU- or GPU-based Training Job.

If all used images are customized, do as follows to use a specified Conda
environment to start training:

Training jobs do not run in a shell. Therefore, you are not allowed to run the
conda activate command to activate a specified Conda environment. In this case,
use other methods to start training.

For example, Conda in your custom image is installed in the /home/ma-user/
anaconda3 directory, the Conda environment is python-3.7.10, and the training
script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py. Use a
specified Conda environment to start training in one of the following ways:

● Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and
ANACONDA_DIR environment variables for the image.
Run the python command to start the training script. The following shows an
example:
python /home/ma-user/modelarts/user-job-dir/code/train.py

● Method 2: Use the absolute path of Conda environment Python.
Run the /home/ma-user/anaconda3/envs/python-3.7.10/bin/python
command to start the training script. The following shows an example:
/home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/
code/train.py

● Method 3: Configure the path environment variable.
Configure the bin directory of the specified Conda environment into the path
environment variable. Run the python command to start the training script.
The following shows an example:
export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/
modelarts/user-job-dir/code/train.py

● Method 4: Run the conda run -n command.
Run the /home/ma-user/anaconda3/bin/conda run -n python-3.7.10
command to execute the training. The following shows an example:
/home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-
job-dir/code/train.py

NO TE

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/
$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and
place the following command before the preceding boot command:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

4.2 Example: Creating a Custom Image for Training

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-0080.html

4.2.1 Example: Creating a Custom Image for Training (PyTorch
+ CPU/GPU)

This section describes how to create an image and use the image for training on
the ModelArts platform. The AI engine used for training is PyTorch, and the
resources are CPUs or GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenarios
In this example, create a custom image by writing a Dockerfile on a Linux x86_64
host running the Ubuntu 18.04 operating system.

Objective: Build and install container images of the following software and use the
images and CPUs/GPUs for training on ModelArts.

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● pytorch-1.8.1

Procedure
Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience. The following is the detailed procedure:

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing the Training Script and Uploading It to OBS
4. Step 3 Preparing a Host
5. Step 4 Creating a Custom Image
6. Step 5 Uploading an Image to SWR
7. Step 6 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei ID and enabled Huawei Cloud services, and the
account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-1 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

Table 4-1 Folder to create

Name Description

obs://test-modelarts/pytorch/
demo-code/

Stores the training script.

obs://test-modelarts/pytorch/log/ Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS

Prepare the training script pytorch-verification.py and upload it to the obs://test-
modelarts/pytorch/demo-code/ folder of the OBS bucket.

The pytorch-verification.py file contains the following information:

import torch
import torch.nn as nn

x = torch.randn(5, 3)
print(x)

available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
y = torch.randn(5, 3).to(available_dev)
print(y)

Step 3 Preparing a Host

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-3 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● pytorch-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses the Linux x86_64 OS as an example to describe how to
obtain the Docker installation package. For more details about how to install
Docker, see official Docker documents.
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Run the following command to check the Docker Engine version:
docker version | grep -A 1 Engine

The following information is displayed:
...
Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

NO TE

In Huawei Mirrors https://mirrors.huaweicloud.com/home, search for pypi to obtain
the pip.conf file.

5. Download the following .whl files from https://download.pytorch.org/whl/
torch_stable.html:
– torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
– torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
– torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NO TE

The URL code of the + symbol is %2B. When searching for a file in the above website,
replace the + symbol in the file name with %2B.
For example, torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

6. Download the Miniconda3-py37_4.12.0-Linux-x86_64.sh installation file
(Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-
py37_4.12.0-Linux-x86_64.sh.

7. Store the pip source file, torch*.whl file, and Miniconda3 installation file in the
context folder, which is as follows:

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

https://docs.docker.com/engine/install/binaries/#install-static-binaries

context
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

8. Write the container image Dockerfile.

Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The host must be connected to the public network for creating a container image.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration provided by Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 to the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install torch*.whl using the default Miniconda3 Python environment in /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

Install vim and cURL in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 apt-get update && \
 apt-get install -y vim curl && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 of the base container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
 PYTHONUNBUFFERED=1

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.
9. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Dockerfile
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

10. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image pytorch:1.8.1-
cuda11.1:
docker build . -t pytorch:1.8.1-cuda11.1

The following log information displayed during image creation indicates that
the image has been created.
Successfully tagged pytorch:1.8.1-cuda11.1

Step 5 Uploading an Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-4 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-5 Creating an organization

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 4-6 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Run the following command to tag the uploaded image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker tag pytorch:1.8.1-cuda11.1 swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-
cuda11.1

b. Run the following command to upload the image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker push swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console and check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. On the Create Training Job page, set required parameters and click Submit.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 5 Uploading an Image to SWR.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/pytorch/demo-code/. The training code
is automatically downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container. demo-code (customizable) is the last-
level directory of the OBS path.

– Boot Command: /home/ma-user/miniconda3/bin/python $
{MA_JOB_DIR}/demo-code/pytorch-verification.py. demo-code
(customizable) is the last-level directory of the OBS path.

– Resource Pool: Public resource pools

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

– Resource Type: Select CPU or GPU.
– Persistent Log Saving: enabled
– Job Log Path: Set this parameter to the OBS path for storing training

logs, for example, obs://test-modelarts/pytorch/log/.
4. Check the parameters of the training job and click Submit.
5. Wait until the training job is completed.

After a training job is created, the operations such as container image
downloading, code directory downloading, and boot command execution are
automatically performed in the backend. Generally, the training duration
ranges from dozens of minutes to several hours, depending on the training
procedure and selected resources. After the training job is executed, the log
similar to the following is output.

Figure 4-7 Run logs of training jobs with GPU specifications

4.2.2 Example: Creating a Custom Image for Training (MPI +
CPU/GPU)

This section describes how to create an image and use the image for training on
the ModelArts platform. The AI engine used for training is MPI, and the resources
are CPUs or GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenarios
In this example, create a custom image by writing a Dockerfile on a Linux x86_64
host running the Ubuntu 18.04 operating system.

Objective: Build and install container images of the following software and use the
images and CPUs/GPUs for training on ModelArts.

● ubuntu-18.04
● cuda-11.1
● python-3.7.13

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

● openmpi-3.0.0

Procedure
Before using a custom image to create a training job, get familiar with Docker and
have development experience. The following is the detailed procedure:

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing Script Files and Uploading Them to OBS
4. Step 3 Preparing an Image Server
5. Step 4 Creating a Custom Image
6. Step 5 Uploading an Image to SWR
7. Step 6 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei ID and enabled Huawei Cloud services, and the
account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-2 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 4-2 Folder to create

Name Description

obs://test-modelarts/mpi/demo-
code/

Stores the MPI boot script and training
script file.

obs://test-modelarts/mpi/log/ Stores training log files.

Step 2 Preparing Script Files and Uploading Them to OBS
Prepare the MPI boot script run_mpi.sh and training script mpi-verification.py
and upload them to the obs://test-modelarts/mpi/demo-code/ folder of the OBS
bucket.

● The content of the MPI boot script run_mpi.sh is as follows:
#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"38888"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-
p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG -x NCCL_SOCKET_IFNAME -x NCCL_IB_HCA -x NCCL_IB_TIMEOUT -x
NCCL_IB_GID_INDEX -x NCCL_IB_TC \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x PATH -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

NO TE

The script run_mpi.sh uses LF line endings. If CRLF line endings are used, executing
the training job will fail, and the error "$'\r': command not found" will be displayed in
logs.

● The content of the training script mpi-verification.py is as follows:
import os
import socket

if __name__ == '__main__':
 print(socket.gethostname())

 # https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables
 print('OMPI_COMM_WORLD_SIZE: ' + os.environ['OMPI_COMM_WORLD_SIZE'])
 print('OMPI_COMM_WORLD_RANK: ' + os.environ['OMPI_COMM_WORLD_RANK'])
 print('OMPI_COMM_WORLD_LOCAL_RANK: ' + os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Step 3 Preparing an Image Server
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-8 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image
Objective: Build and install container images of the following software and use the
ModelArts training service to run the images.

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● openmpi-3.0.0

The following describes how to create a custom image by writing a Dockerfile.

1. Install Docker.
The following uses the Linux x86_64 OS as an example to describe how to
obtain a Docker installation package. For more details, see Docker official
documents. Run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Check the Docker engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

You are advised to use Docker Engine of this version or later to create a custom
image.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

3. Create a folder named context.
mkdir -p context

4. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

5. Download the openmpi 3.0.0 installation file.
Download the openmpi 3.0.0 file edited using Horovod v0.22.1 from https://
github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

6. Store the Miniconda3 and openmpi 3.0.0 files in the context folder. The
following shows the context folder:
context
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
└── openmpi-3.0.0-bin.tar.gz

7. Write the Dockerfile of the container image.
Create an empty file named Dockerfile in the context folder and write the
following content to the file:
The host must be connected to the public network for creating a container image.

Basic container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the basic container image is root.
USER root

Copy the Miniconda3 (Python 3.7.13) installation files to the /tmp directory of the basic container
image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp

Install Miniconda3 to the /home/ma-user/miniconda3 directory of the basic container image.
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

Install vim, cURL, net-tools, and the SSH tool in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file written using Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 of the basic container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
 PYTHONUNBUFFERED=1

Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

For details about how to write a Dockerfile, see Docker official documents.
8. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Dockerfile
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
└── openmpi-3.0.0-bin.tar.gz

9. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image mpi:3.0.0-
cuda11.1:
docker build . -t mpi:3.0.0-cuda11.1

The following log information displayed during image creation indicates that
the image has been created.
naming to docker.io/library/mpi:3.0.0-cuda11.1

Step 5 Uploading an Image to SWR
1. Log in to the SWR console and select the target region.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Figure 4-9 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-10 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 4-11 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Run the following command to tag the uploaded image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker tag mpi:3.0.0-cuda11.1 swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-
cuda11.1

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

b. Run the following command to upload the image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1

6. After the image is uploaded, choose My Images on the left navigation pane
of the SWR console to view the uploaded custom images.
swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1 is
the SWR URL of the custom image.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. Log in to the ModelArts management console. In the left navigation pane,
choose Training Management > Training Jobs (New).

3. On the Create Training Job page, configure parameters and click Submit.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: swr.cn-north-4.myhuaweicloud.com/deep-learning/

mpi:3.0.0-cuda11.1
– Code Directory: OBS path to the boot script, for example, obs://test-

modelarts/mpi/demo-code/.
– Boot Command: bash ${MA_JOB_DIR}/demo-code/run_mpi.sh python

${MA_JOB_DIR}/demo-code/mpi-verification.py
– Environment Variable: Add MY_SSHD_PORT = 38888.
– Resource Pool: Public resource pools
– Resource Type: Select GPU.
– Compute Nodes: Enter 1 or 2.
– Persistent Log Saving: enabled
– Job Log Path: Set this parameter to the OBS path for storing training

logs, for example, obs://test-modelarts/mpi/log/.
4. Check the parameters of the training job and click Submit.
5. Wait until the training job is completed.

After a training job is created, the operations such as container image
downloading, code directory downloading, and boot command execution are
automatically performed in the backend. Generally, the training duration
ranges from dozens of minutes to several hours, depending on the training
procedure and selected resources. After the training job is executed, the log
similar to the following is output.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

Figure 4-12 Run logs of worker-0 with one compute node and GPU
specifications

Set Compute Nodes to 2 and run the training job. Figure 4-13 and Figure
4-14 show the log information.

Figure 4-13 Run logs of worker-0 with two compute nodes and GPU
specifications

Figure 4-14 Run logs of worker-1 with two compute nodes and GPU
specifications

4.2.3 Example: Creating a Custom Image for Training
(Horovod-PyTorch and GPUs)

This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is horovod_0.22.1-pytorch_1.8.1, and
the resources used for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a CPU- or GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● pytorch-1.8.1
● horovod-0.22.1

Procedure

Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing the Training Script and Uploading It to OBS
4. Step 3 Preparing a Server
5. Step 4 Creating a Custom Image
6. Step 5 Uploading the Image to SWR
7. Step 6 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-3 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 4-3 Folder to create

Name Description

obs://test-modelarts/pytorch/
demo-code/

Stores the training script.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

Name Description

obs://test-modelarts/pytorch/log/ Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS
Obtain training scripts pytorch_synthetic_benchmark.py and run_mpi.sh and
upload them to obs://test-modelarts/horovod/demo-code/ in the OBS bucket.

pytorch_synthetic_benchmark.py is as follows:

import argparse
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import models
import horovod.torch as hvd
import timeit
import numpy as np

Benchmark settings
parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
 help='use fp16 compression during allreduce')

parser.add_argument('--model', type=str, default='resnet50',
 help='model to benchmark')
parser.add_argument('--batch-size', type=int, default=32,
 help='input batch size')

parser.add_argument('--num-warmup-batches', type=int, default=10,
 help='number of warm-up batches that don\'t count towards benchmark')
parser.add_argument('--num-batches-per-iter', type=int, default=10,
 help='number of batches per benchmark iteration')
parser.add_argument('--num-iters', type=int, default=10,
 help='number of benchmark iterations')

parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')

parser.add_argument('--use-adasum', action='store_true', default=False,
 help='use adasum algorithm to do reduction')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

hvd.init()

if args.cuda:
 # Horovod: pin GPU to local rank.
 torch.cuda.set_device(hvd.local_rank())

cudnn.benchmark = True

Set up standard model.
model = getattr(models, args.model)()

By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1

if args.cuda:
 # Move model to GPU.
 model.cuda()

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

 # If using GPU Adasum allreduce, scale learning rate by local_size.
 if args.use_adasum and hvd.nccl_built():
 lr_scaler = hvd.local_size()

optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler)

Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none

Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
 named_parameters=model.named_parameters(),
 compression=compression,
 op=hvd.Adasum if args.use_adasum else hvd.Average)

Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)

Set up fixed fake data
data = torch.randn(args.batch_size, 3, 224, 224)
target = torch.LongTensor(args.batch_size).random_() % 1000
if args.cuda:
 data, target = data.cuda(), target.cuda()

def benchmark_step():
 optimizer.zero_grad()
 output = model(data)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()

def log(s, nl=True):
 if hvd.rank() != 0:
 return
 print(s, end='\n' if nl else '')

log('Model: %s' % args.model)
log('Batch size: %d' % args.batch_size)
device = 'GPU' if args.cuda else 'CPU'
log('Number of %ss: %d' % (device, hvd.size()))

Warm-up
log('Running warmup...')
timeit.timeit(benchmark_step, number=args.num_warmup_batches)

Benchmark
log('Running benchmark...')
img_secs = []
for x in range(args.num_iters):
 time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter)
 img_sec = args.batch_size * args.num_batches_per_iter / time
 log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device))
 img_secs.append(img_sec)

Results
img_sec_mean = np.mean(img_secs)
img_sec_conf = 1.96 * np.std(img_secs)
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf))
log('Total img/sec on %d %s(s): %.1f +-%.1f' %
 (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))

run_mpi.sh is as follows:

#!/bin/bash
MY_HOME=/home/ma-user

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

Step 3 Preparing a Server
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Figure 4-15 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image
Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● pytorch-1.8.1
● horovod-0.22.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses Linux x86_64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.

2. Check the Docker Engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://docs.docker.com/engine/install/binaries/#install-static-binaries

trusted-host = repo.huaweicloud.com
timeout = 120

NO TE

To obtain pip.conf, switch to Huawei Mirrors https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download the source Horovod code file.
Download horovod-0.22.1.tar.gz from https://pypi.org/project/horovod/
0.22.1/#files.

6. Download .whl files.
Download the following .whl files from https://download.pytorch.org/whl/
torch_stable.html.
– torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
– torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
– torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NO TE

The URL code of the plus sign (+) is %2B. When searching for files in the preceding
websites, replace the plus sign (+) in the file name with %2B, for example,
torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

7. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

8. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-devel-ubuntu18.04 AS builder

Install CMake obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y build-essential cmake g++-7 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp
COPY openmpi-3.0.0-bin.tar.gz /tmp
COPY horovod-0.22.1.tar.gz /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Environment variables required for building Horovod with PyTorch
ENV HOROVOD_NCCL_INCLUDE=/usr/include \
 HOROVOD_NCCL_LIB=/usr/lib/x86_64-linux-gnu \
 HOROVOD_MPICXX_SHOW="/usr/local/openmpi/bin/mpicxx -show" \
 HOROVOD_GPU_OPERATIONS=NCCL \
 HOROVOD_WITH_PYTORCH=1

Install the .whl files using default Miniconda3 Python environment /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

Build and install horovod-0.22.1.tar.gz using default Miniconda3 Python environment /home/ma-
user/miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/horovod-0.22.1.tar.gz

Create the container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, MLNX_OFED, and SSH tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping libfile-find-rule-perl-perl \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 # mlnx ofed
 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-
dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the basic container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
9. Download the MLNX_OFED installation package.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/
mlnx_ofed/, in the Download tab, select a proper installation package from
Current Versions or Archive Versions. In this example, choose Archive
Versions, set Version to 5.4-3.5.8.0-LTS, OS Distribution to Ubuntu, OS
Distribution Version to Ubuntu 18.04, Architecture to x86_64, and
download the MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
installation package.

10. Download openmpi-3.0.0-bin.tar.gz.
Download openmpi-3.0.0-bin.tar.gz from https://github.com/horovod/
horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

11. Store the pip source file, .whl files, and Miniconda3 installation file in the
context folder, which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── horovod-0.22.1.tar.gz

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

├── openmpi-3.0.0-bin.tar.gz
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

12. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image horovod-
pytorch:0.22.1-1.8.1-ofed-cuda11.1:
docker build . -t horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

The following log shows that the image has been created.
Successfully tagged horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

Step 5 Uploading the Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-16 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-17 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Figure 4-18 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1 swr.{region-id}.{domain}/deep-
learning/horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/horovod-pytorch:0.22.1-1.8.1-ofed-
cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 5 Uploading the Image to SWR.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/pytorch/demo-code/. The training code
is automatically downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container. demo-code (customizable) is the last-
level directory of the OBS path.

– Boot Command: bash ${MA_JOB_DIR}/demo-code/run_mpi.sh python
${MA_JOB_DIR}/demo-code/pytorch_synthetic_benchmark.py. demo-
code (customizable) is the last-level directory of the OBS path.

– Environment Variable: Click Add Environment Variable and add the
environment variable MY_SSHD_PORT=38888.

– Resource Pool: Select Public resource pools.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

– Resource Type: Select GPU.
– Compute Nodes: 1 or 2
– Persistent Log Saving: enabled
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/pytorch/log/
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

Figure 4-19 Run logs of training jobs with GPU specifications (one compute
node)

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Figure 4-20 Run logs of training jobs with GPU specifications (two compute
nodes)

4.2.4 Example: Creating a Custom Image for Training
(MindSpore and GPUs)

This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is MindSpore, and the resources used
for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● mindspore gpu-1.8.1

Procedure

Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

● Prerequisites
● Step 1 Creating an OBS Bucket and Folder

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

● Step 2 Creating a Dataset and Uploading It to OBS
● Step 3 Preparing the Training Script and Uploading It to OBS
● Step 4 Preparing a Server
● Step 5 Creating a Custom Image
● Step 6 Uploading the Image to SWR
● Step 7 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-4 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details, see Creating a Bucket and Creating a Folder.

Ensure that the OBS and ModelArts are in the same region.

Table 4-4 Required OBS folders

Folder Description

obs://test-modelarts/mindspore-
gpu/resnet/

Stores the training script.

obs://test-modelarts/mindspore-
gpu/cifar-10-batches-bin/

Stores dataset files.

obs://test-modelarts/mindspore-
gpu/output/

Stores training output files.

obs://test-modelarts/mindspore-
gpu/log/

Store training log files.

Step 2 Creating a Dataset and Uploading It to OBS
Go to http://www.cs.toronto.edu/~kriz/cifar.html, download the CIFAR-10 binary
version (suitable for C programs) package, decompress it, and upload the
decompressed data to the obs://test-modelarts/mindspore-gpu/cifar-10-
batches-bin/ directory in the OBS bucket.

Step 3 Preparing the Training Script and Uploading It to OBS
Obtain the ResNet file and script run_mpi.sh and upload them to obs://test-
modelarts/mindspore-gpu/resnet/ in the OBS bucket.

Download the ResNet file from https://gitee.com/mindspore/models/tree/r1.8/
official/cv/resnet.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://gitee.com/mindspore/models/tree/r1.8/official/cv/resnet
https://gitee.com/mindspore/models/tree/r1.8/official/cv/resnet

run_mpi.sh is as follows:
#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

The obs://test-modelarts/mindspore-gpu/resnet/ folder contains files resnet
and run_mpi.sh.

Step 4 Preparing a Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Figure 4-21 Creating an ECS using a public image (x86)

Step 5 Creating a Custom Image
Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● mindspore gpu-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses Linux x86_64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.

2. Check the Docker Engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://docs.docker.com/engine/install/binaries/#install-static-binaries

NO TE

To obtain pip.conf, switch to Huawei Mirrors https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl from
https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/
MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-
linux_x86_64.whl.

6. Download the Miniconda3 installation file.
Download Miniconda3-py37_4.12.0-Linux-x86_64.sh from https://
repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh.

7. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-devel-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the whl file using default Miniconda3 Python environment /home/ma-user/miniconda3/bin/
pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl \
 easydict PyYAML

Create the container image.
FROM nvidia/cuda:11.1.1-cudnn8-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, MLNX_OFED, and SSH tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping libfile-find-rule-perl-perl \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 # mlnx ofed
 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl
https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl
https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl

dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the basic container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
8. Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/
mlnx_ofed/, click Download, set Version to 5.4-3.5.8.0-LTS,
OSDistributionVersion to Ubuntu 18.04, and Architecture to x86_64, and
download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

9. Download openmpi-3.0.0-bin.tar.gz.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Download openmpi-3.0.0-bin.tar.gz from https://github.com/horovod/
horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

10. Store the Dockerfile and Miniconda3 installation file in the context folder,
which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl
├── openmpi-3.0.0-bin.tar.gz
└── pip.conf

11. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image mindspore:1.8.1-
ofed-cuda11.1:
docker build . -t mindspore:1.8.1-ofed-cuda11.1

The following log shows that the image has been created.
Successfully tagged mindspore:1.8.1-ofed-cuda11.1

Step 6 Uploading the Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-22 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-23 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

Figure 4-24 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag mindspore:1.8.1-ofed-cuda11.1 swr.{region-id}.{domain}/deep-learning/
mindspore:1.8.1-ofed-cuda11.1

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/mindspore:1.8.1-ofed-cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 6 Uploading the Image to SWR.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/mindspore-gpu/resnet/. The training
code is automatically downloaded to the ${MA_JOB_DIR}/resnet
directory of the training container. resnet (customizable) is the last-level
directory of the OBS path.

– Boot Command: bash ${MA_JOB_DIR}/resnet/run_mpi.sh python $
{MA_JOB_DIR}/resnet/train.py. resnet (customizable) is the last-level
directory of the OBS path.

– Training Input: Click Add Training Input. Enter data_path for the name,
select the OBS path to the target dataset, for example, obs://test-
modelarts/mindspore-gpu/cifar-10-batches-bin/, and set Obtained
from to Hyperparameters.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

– Training Output: Click Add Training Output. Enter output_path for the
name, select an OBS path for storing training outputs, for example, obs://
test-modelarts/mindspore-gpu/output/, and set Obtained from to
Hyperparameters and Predownload to No.

– Hyperparameters: Click Add Hyperparameter and add the following
hyperparameters:

▪ run_distribute=True

▪ device_num=1 (Set this parameter based on the number of GPUs in
the instance flavors.)

▪ device_target=GPU

▪ epoch_size=2

– Environment Variable: Click Add Environment Variable and add the
environment variable MY_SSHD_PORT=38888.

– Resource Pool: Select Public resource pools.
– Resource Type: Select GPU.
– Compute Nodes: 1 or 2
– Persistent Log Saving: enabled
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/mindspore-gpu/log/
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

Figure 4-25 Run logs of training jobs with GPU specifications (one compute
node)

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Figure 4-26 Run logs of training jobs with GPU specifications (two compute
nodes)

4.2.5 Example: Creating a Custom Image for Training
(TensorFlow and GPUs)

This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is TensorFlow, and the resources used
for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenario
In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.2
● python-3.7.13
● mlnx ofed-5.4
● tensorflow gpu-2.10.0

Procedure
Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Creating a Dataset and Uploading It to OBS
4. Step 3 Preparing the Training Script and Uploading It to OBS
5. Step 4 Preparing a Server
6. Step 5 Creating a Custom Image
7. Step 6 Uploading the Image to SWR
8. Step 7 Creating a Training Job on ModelArts

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Prerequisites
You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-5 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details, see Creating a Bucket and Creating a Folder.

Ensure that the OBS and ModelArts are in the same region.

Table 4-5 Required OBS folders

Folder Description

obs://test-modelarts/tensorflow/
code/

Stores the training script.

obs://test-modelarts/tensorflow/
data/

Stores dataset files.

obs://test-modelarts/
tensorflow/log/

Store training log files.

Step 2 Creating a Dataset and Uploading It to OBS
Download mnist.npz from https://storage.googleapis.com/tensorflow/tf-keras-
datasets/mnist.npz, and upload it to obs://test-modelarts/tensorflow/data/ in
the OBS bucket.

Step 3 Preparing the Training Script and Uploading It to OBS
Obtain the training script mnist.py and upload it to obs://test-modelarts/
tensorflow/code/ in the OBS bucket.

mnist.py is as follows:

import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='TensorFlow quick start')
parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

Step 4 Preparing a Server
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-27 Creating an ECS using a public image (x86)

Step 5 Creating a Custom Image
Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● mindspore gpu-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses Linux x86_64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries

2. Check the Docker Engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

NO TE

To obtain pip.conf, switch to Huawei Mirrors https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download tensorflow_gpu-2.10.0-cp37-cp37m-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
Download tensorflow_gpu-2.10.0-cp37-cp37m-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl from https://pypi.org/
project/tensorflow-gpu/2.10.0/#files.

6. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

7. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the TensorFlow .whl file using default Miniconda3 Python environment /home/ma-user/

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir keras==2.10.0

Create the container image.
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, and MLNX_OFED tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping && \
 # mlnx ofed
 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-
dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the base container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
8. Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/
mlnx_ofed/, click Download, set Version to 5.4-3.5.8.0-LTS,
OSDistributionVersion to Ubuntu 18.04, and Architecture to x86_64, and
download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

9. Store the Dockerfile and Miniconda3 installation file in the context folder,
which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
└── tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

10. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image
tensorflow:2.10.0-ofed-cuda11.2:
docker build . -t tensorflow:2.10.0-ofed-cuda11.2

The following log shows that the image has been created.
Successfully tagged tensorflow:2.10.0-ofed-cuda11.2

Step 6 Uploading the Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-28 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-29 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Figure 4-30 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/
tensorflow:2.10.0-ofed-cuda11.2

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/tensorflow:2.10.0-ofed-cuda11.2

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 5 Creating a Custom Image.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/tensorflow/code/. The training code is
automatically downloaded to the ${MA_JOB_DIR}/code directory of the
training container. code (customizable) is the last-level directory of the
OBS path.

– Boot Command: python ${MA_JOB_DIR}/code/mnist.py. code
(customizable) is the last-level directory of the OBS path.

– Training Input: Click Add Training Input. Enter data_path for the name,
select the OBS path to mnist.npz, for example, obs://test-modelarts/
tensorflow/data/mnist.npz, and set Obtained from to
Hyperparameters.

– Resource Pool: Select Public resource pools.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

– Resource Type: Select GPU.
– Compute Nodes: Enter 1.
– Persistent Log Saving: enabled
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/mindspore-gpu/log/
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

Figure 4-31 Run logs of training jobs with GPU specifications

4.3 Preparing a Training Image

4.3.1 Specifications for Custom Images for Training Jobs
When you use a locally developed model and training script to create a custom
image, ensure that the custom image complies with the specifications defined by
ModelArts.

Specifications
● Use Ubuntu 18.04 for custom images to in case versions are not compatible.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

● Do not use a custom image larger than 15 GB. The size should not exceed
half of the container engine space of the resource pool. Otherwise, the start
time of the training job is affected.

The container engine space of ModelArts public resource pool is 50 GB. By
default, the container engine space of the dedicated resource pool is also 50
GB. You can customize the container engine space when creating a dedicated
resource pool.

● The uid of the default user of a custom image must be 1000.

● The GPU or Ascend driver cannot be installed in a custom image. When you
select GPU resources to run training jobs, ModelArts automatically places the
GPU driver in the /usr/local/nvidia directory in the training environment.
When you select Ascend resources to run training jobs, ModelArts
automatically places the Ascend driver in the /usr/local/Ascend/driver
directory.

● x86- or Arm-based custom images can run only with specifications
corresponding to their architecture.

– Run the following command to check the CPU architecture of a custom
image:
docker inspect {Custom image path} | grep Architecture

The following is the command output for an Arm-based custom image:
"Architecture": "arm64"

– If the name of a specification contains Arm, this specification is an Arm-
based CPU architecture.

– If the name of a specification does not contain Arm, this specification is
an x86-based CPU architecture.

● ModelArts does not support the download of open source installation
packages. Install the dependency packages required by the training job in the
custom image.

4.3.2 Migrating an Image to ModelArts Training
To migrate an image to the training management, perform the following
operations:

1. Add the default user group ma-group (gid = 100) of the training
management for the image.

NO TE

If the user group whose gid is 100 already exists, the error message "groupadd: GID
'100' already exists" may be displayed. You can use the command cat /etc/group |
grep 100 to check whether the user group whose GID is 100 exists.

If the user group whose gid is 100 already exists, skip this step and delete the
command RUN groupadd ma-group -g 100 from the Dockerfile.

2. Add the default user ma-user (uid = 1000) of the training management for
the image.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

NO TE

If the user whose uid is 1000 already exists, the error message "useradd: UID 1000 is
not unique" may be displayed. You can use the command cat /etc/passwd | grep
1000 to check whether the user whose UID is 1000 exists.
If the user whose uid is 1000 already exists, skip this step and delete the command
RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user from the
Dockerfile.

3. Modify the permissions on files in the image to allow ma-user whose uid is
1000 to read and write the files.

You can modify an image by referring to the following Dockerfile so that the
image complies with specifications for custom images of the new-version training
management.

FROM {An existing image}

USER root

If the user group whose GID is 100 already exists, delete the groupadd command.
RUN groupadd ma-group -g 100
If the user whose UID is 1000 already exists, delete the useradd command.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Modify the permissions on image files so that user ma-user whose UID is 1000 can read and write the
files.
RUN chown -R ma-user:100 {Path to the Python software package}

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

After editing the Dockerfile, run the following command to build a new image:

docker build -f Dockerfile . -t {New image}

Upload the new image to SWR. For details, see How Can I Log In to SWR and
Upload Images to It?

4.3.3 Using a Base Image to Create a Training Image
ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot
meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Procedure
Perform the following operations to create an image using a training base image:

1. Install Docker. If the docker images command is executed, Docker has been
installed. In this case, skip this step.
The following uses Linux x86_64 as an example to describe how to obtain the
Docker installation package. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

2. Create a folder named context.
mkdir -p context

3. Obtain the pip.conf file.
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

4. Create a new image based on a training base image provided by ModelArts.
Save the edited Dockerfile in the context folder. For details about how to
obtain a training base image, see Available Training Base Images.
FROM {Path to the training base image provided by ModelArts}

Configure pip.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf

Configure the preset environment variables of the container image.
Add the Python interpreter path to the PATH environment variable.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=${ANACONDA_DIR}/envs/${ENV_NAME}/bin:$PATH \
 PYTHONUNBUFFERED=1

RUN /home/ma-user/anaconda/bin/pip install --no-cache-dir numpy

5. Run the following command in the directory where the Dockerfile is stored to
create a container image, for example, training:v1:
docker build . -t training:v1

6. Upload the new image to SWR. For details, see How Can I Log In to SWR
and Upload Images to It?.

7. Use the custom image to create a training job on ModelArts. For details, see
Using a Custom Image to Create a CPU- or GPU-based Training Job.

4.3.4 Installing MLNX_OFED in a Container Image

Scenarios

The Mellanox Technologies NIC has been configured on ModelArts GPU servers to
support Remote Direct Memory Access (RDMA). As a result, you can install
MLNX_OFED in the container image, which will allow the NCCL to leverage the
NIC and enhance the efficiency of cross-node communication.

After this NIC is enabled for NCCL, NET/IB is used for cross-node communication.
If this NIC is not enabled, NET/Socket is used for cross-node communication.
NET/IB is better than NET/Socket in terms of latency and bandwidth.

Table 4-6 Mellanox Technologies NIC and MLNX_OFED installation on ModelArts
GPU servers

GPU
Model

Mellanox
Technologies
NIC

Installed
MLNX_OFED
Version

Recommended MLNX_OFED
Version for Container Image

V100 ConnectX-5 4.3-1.0.1.0/4.5-
1.0.1.0

4.9-6.0.6.0-LTS

Ant8/
Ant1

ConnectX-6
Dx

5.5-1.0.3.2 5.8-2.0.3.0-LTS

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

https://github.com/NVIDIA/nccl

Installing MLNX_OFED

Take the Ubuntu18.04 container image as an example. The Dockerfile for
installing MLNX_OFED 4.9-6.0.6.0-LTS is as follows:

NO TE

The host that is used to download files and create container images using a Dockerfile
must be able to connect to the public network.

FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install --no-install-recommends -y lsb-core curl && \
 curl -k -o /tmp/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz https://content.mellanox.com/
ofed/MLNX_OFED-4.9-6.0.6.0/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz && \
 cd /tmp && \
 tar xzf MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz && \
 cd MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64 && \
 ./mlnxofedinstall --user-space-only --without-fw-update --without-neohost-backend --force && \
 rm /tmp/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64.tgz && \
 rm -rf /tmp/MLNX_OFED_LINUX-4.9-6.0.6.0-ubuntu18.04-x86_64 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Create a container image by referring to this command example:

docker build -f Dockerfile . -t nvidia/cuda:mlnx-ofed-4.9-11.1.1-runtime-ubuntu18.04

After the container image has been created, run this command to obtain the
MLNX_OFED version in the container image:

docker run -ti --rm nvidia/cuda:mlnx-ofed-4.9-11.1.1-runtime-ubuntu18.04 ofed_info | head -n 1

The command output is as follows:

MLNX_OFED_LINUX-4.9-6.0.6.0 (OFED-4.9-6.0.6):

4.4 Creating an Algorithm Using a Custom Image
Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management.

Entries for Creating an Algorithm

You can create an algorithm using a custom image on ModelArts in either of the
following ways:

● Entry 1: On the ModelArts console, choose Algorithm Management > My
algorithms. Then, create an algorithm and use it in training jobs or publish it
to AI Gallery.

● Entry 2: On the ModelArts console, choose Training Management > Training
Jobs, and click Create Training Job to create a custom algorithm and submit

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

a training job. For details, see Using a Custom Image to Create a CPU- or
GPU-based Training Job.

Parameters for creating an algorithm

Table 4-7 Parameters for creating an algorithm

Parameter Description

Boot Mode Select Custom images. This parameter is mandatory.

Image URL of an SWR image. This parameter is mandatory.
● Private images or shared images: Click Select on the right

to select an SWR image. Ensure that the image has been
uploaded to SWR. For details, see How Can I Log In to
SWR and Upload Images to It?.

● Public images: You can also manually enter the image path
in the format of "<Organization to which your image
belongs>/<Image name>" on SWR. Do not contain the
domain name (swr.<region>.xxx.com) in the path because
the system will automatically add the domain name to the
path. For example:
modelarts-job-dev-image/pytorch_1_8:train-pytorch_1.8.0-cuda_10.2-py_3.7-
euleros_2.10.1-x86_64-8.1.1

Code Directory OBS path for storing the training code. This parameter is
optional.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The content in the OBS path will be automatically
downloaded to ${MA_JOB_DIR}/demo-code in the training
container, and demo-code (customizable) is the last-level
directory of the OBS path.

Boot
Command

Command for booting an image. This parameter is mandatory.
The boot command will be automatically executed after the
code directory is downloaded.
● If the training boot script is a .py file, train.py for example,

the boot command can be python ${MA_JOB_DIR}/demo-
code/train.py.

● If the training boot script is an .sh file, main.sh for example,
the boot command can be bash ${MA_JOB_DIR}/demo-
code/main.sh.

Semicolons (;) and ampersands (&&) can be used to combine
multiple boot commands, but line breaks are not supported.
demo-code (customizable) in the boot command is the last-
level directory of the OBS path.

Configuring Pipelines
A preset image-based algorithm obtains data from an OBS bucket or dataset for
model training. The training output is stored in an OBS bucket. The input and

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

output parameters in your algorithm code must be parsed to enable data
exchange between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Developing a Custom Script.

When you use a preset image to create an algorithm, configure the input and
output pipelines.

● Input configurations

Table 4-8 Input configurations

Paramete
r

Description

Parameter
Name

Set the name based on the data input parameter in your
algorithm code. The code path parameter must be the same as
the training input parameter parsed in your algorithm code.
Otherwise, the algorithm code cannot obtain the input data.
For example, If you use argparse in the algorithm code to
parse data_url into the data input, set the data input
parameter to data_url when creating the algorithm.

Descriptio
n

Customizable description of the input parameter,

Obtained
from

Source of the input parameter. You can select
Hyperparameters (default) or Environment variables.

Constraint
s

Whether data is obtained from a storage path or ModelArts
dataset.
If you select the ModelArts dataset as the data source, the
following constraints are added:
● Labeling Type: For details, see Creating a Labeling Job.
● Data Format, which can be Default, CarbonData, or both.

Default indicates the manifest format.
● Data Segmentation: available only for image classification,

object detection, text classification, and sound classification
datasets.
Possible values are Segmented dataset, Dataset not
segmented, and Unlimited. For details, see Publishing a
Data Version.

Add Multiple data input sources are allowed.

● Output configurations

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0008.html
https://support.huaweicloud.com/intl/en-us/datalabel-modelarts/datalabel-modelarts_0004.html
https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0028.html
https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0028.html

Table 4-9 Output configurations

Parameter Description

Parameter
Name

Set the name based on the data output parameter in your
algorithm code. The code path parameter must be the same
as the training output parameter parsed in your algorithm
code. Otherwise, the algorithm code cannot obtain the output
path.
For example, If you use argparse in the algorithm code to
parse train_url into the data output, set the data output
parameter to train_url when creating the algorithm.

Descriptio
n

Customizable description of the output parameter,

Obtained
from

Source of the output parameter. You can select
Hyperparameters (default) or Environment variables.

Add Multiple data output paths are allowed.

Defining Hyperparameters

When you use a preset image to create an algorithm, ModelArts allows you to
customize hyperparameters so you can view or modify them anytime. After the
hyperparameters are defined, they are displayed in the startup command and
transferred to your boot file as CLI parameters.

1. Import hyperparameters.
You can click Add hyperparameter to manually add hyperparameters.

Figure 4-32 Adding hyperparameters

2. Edit hyperparameters.
For details, see Table 4-10.

Table 4-10 Hyperparameters

Parame
ter

Description

Name Hyperparameter name
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Type of the hyperparameter, which can be String, Integer, Float,
or Boolean

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Parame
ter

Description

Default Default value of the hyperparameter, which is used for training
jobs by default

Constrai
nts

Click Restrain. Then, set the range of the default value or
enumerated value in the dialog box displayed.

Require
d

Select Yes or No.
● If you select No, you can delete the hyperparameter on the

training job creation page when using this algorithm to create
a training job.

● If you select Yes, you cannot delete the hyperparameter on
the training job creation page when using this algorithm to
create a training job.

Descript
ion

Description of the hyperparameter
Only letters, digits, spaces, hyphens (-), underscores (_), commas
(,), and periods (.) are allowed.

Adding Training Constraints

You can add training constraints of the algorithm based on your needs.

● Resource Type: Select the required resource types.
● Multicard Training: Choose whether to support multi-card training.
● Distributed Training: Choose whether to support distributed training.

Runtime Environment Preview

When creating an algorithm, click the arrow on in the lower
right corner of the page to know the path of the code directory, boot file, and
input and output data in the training container.

Follow-Up Procedure

After an algorithm is created, use it to create a training job. For details, see Using
a Custom Image to Create a CPU- or GPU-based Training Job.

4.5 Using a Custom Image to Create a CPU- or GPU-
based Training Job

Model training is an iterative optimization process. Through unified training
management, you can flexibly select algorithms, data, and hyperparameters to
obtain the optimal input configuration and model. After comparing metrics
between job versions, you can determine the most satisfactory training job.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

Prerequisites
● The data to be trained has been uploaded to an OBS directory.
● At least one empty folder for storing the training output has been created in

OBS.
● A custom image has been created based on ModelArts specifications. For

details about the custom image specifications, see Specifications for Custom
Images for Training Jobs.

● The custom image has been uploaded to SWR. For details, see How Can I Log
In to SWR and Upload Images to It?.

Creating a Training Job
1. Log in to the ModelArts management console. In the left navigation pane,

choose Training Management > Training Jobs.
2. Click Create Training Job and set parameters.

Table 4-11 Creating a training job using a custom image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Custom image. This parameter is mandatory.

Image Container image path. This parameter is mandatory.
You can set the container image path in either of
the following ways:
● To select your image or an image shared by

others, click Select on the right and select a
container image for training. The required image
must be uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image
name:Version name". Do not contain the domain
name (swr.<region>.xxx.com) in the path because
the system will automatically add the domain
name to the path. For example, if the SWR
address of a public image is
swr.<region>.xxx.com/test-image/
tensorflow2_1_1:1.1.1, enter test-images/
tensorflow2_1_1:1.1.1.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Parameter Description

Code Directory Select the OBS directory where the training code file
is stored. If the custom image does not contain
training code, you need to set this parameter. If the
custom image contains training code, you do not
need to set this parameter.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and
the folder depth cannot exceed 32.

● The training code file is automatically
downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container when the
training job is started. demo-code is the last-
level OBS directory for storing the code. For
example, if Code Directory is set to /test/code,
the training code file is downloaded to the $
{MA_JOB_DIR}/code directory of the training
container.

User ID User ID for running the container. The default value
1000 is recommended.
If the UID needs to be specified, its value must be
within the specified range. The UID ranges of
different resource pools are as follows:
● Public resource pool: 1000 to 65535
● Dedicated resource pool: 0 to 65535

Boot Command Command for booting an image. This parameter is
mandatory.
When a training job is running, the boot command
is automatically executed after the code directory is
downloaded.
● If the training boot script is a .py file, train.py for

example, the boot command is as follows.
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is a .sh file, main.sh for
example, the boot command is as follows.
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&) to
combine multiple commands. demo-code in the
command is the last-level OBS directory where the
code is stored. Replace it with the actual one.

Local Code Directory Specify the local directory of a training container.
When a training starts, the system automatically
downloads the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Parameter Description

Work Directory During training, the system automatically runs the
cd command to execute the boot file in this
directory.

Table 4-12 Parameters for creating a training job

Paramet
er

Sub-
Paramet
er

Description

Input Paramete
r

The algorithm code reads the training input data
based on the input parameter name.
Set this parameter to data_url, which is the same as
the parameter for parsing the input data in the
training code. You can set multiple training input
parameters. The name of each training input
parameter must be unique.
For example, if you use argparse in the training
code to parse data_url into the data input, set the
parameter name of the training input to data_url.
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description="train mnist",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
Add parameters.
parser.add_argument('--train_url', type=str, help='the path model
saved')
parser.add_argument('--data_url', type=str, help='the training data')
Parse the parameters.
args, unknown = parser.parse_known_args()

Dataset Click Dataset and select the target dataset and its
version in the ModelArts dataset list.
When the training job is started, ModelArts
automatically downloads the data in the input path
to the training container.
NOTE

ModelArts data management is being upgraded and is
invisible to users who have not used data management. It
is recommended that new users store their training data in
OBS buckets.

Data
path

Click Data path and select the storage path to the
training input data from an OBS bucket.
When the training job is started, ModelArts
automatically downloads the data in the input path
to the training container.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Paramet
er

Sub-
Paramet
er

Description

How to
Obtain

The following uses training input data_path as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path')
args, unknown = parser.parse_known_args()
data_path = args.data_path

● If you select Environment variables, use this
code to obtain the data:
import os
data_path = os.getenv("data_path", "")

Output Paramete
r

The algorithm code reads the training output data
based on the output parameter name.
Set this parameter to train_url, which is the same
as the parameter for parsing the output data in the
training code. You can set multiple training output
parameters. The name of each training output
parameter must be unique.

Data
path

Click Data path and select the storage path to the
training output data from an OBS bucket. During
training, the system automatically synchronizes files
from the local code directory of the training
container to the data path.
NOTE

The data path can only be an OBS path. To prevent any
issues with data storage, choose an empty directory as the
data path.

How to
Obtain

The following uses the training output train_url as
an example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

● If you select Environment variables, use this
code to obtain the data:
import os
train_url = os.getenv("train_url", "")

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Paramet
er

Sub-
Paramet
er

Description

Predownl
oad

Indicates whether to pre-download the files in the
output directory to a local directory.
● If you set Predownload to No, the system does

not download the files in the training output
data path to a local directory of the training
container when the training job is started.

● If you set Predownload to Yes, the system
automatically downloads the files in the training
output data path to a local directory of the
training container when the training job is
started. The larger the file size, the longer the
download time. To avoid excessive training time,
remove any unneeded files from the local code
directory of the training container as soon as
possible. To use resumable training and
incremental training, Download must be
selected.

Hyperpar
ameters

- Used for training tuning. This parameter is optional.

Environm
ent
Variable

- Add environment variables based on service
requirements. For details about preset environment
variables in the training container, see Viewing
Environment Variables of a Training Container.

Auto
Restart

- Number of retries for a failed training job. If this
parameter is enabled, a failed training job will be
automatically re-delivered and run. On the training
job details page, you can view the number of retries
for a failed training job.
● This function is disabled by default.
● If you enable this function, set the number of

retries. The value ranges from 1 to 3 and cannot
be changed.

3. Select an instance flavor. The value range of the training parameters is
consistent with the constraints of existing custom images. Select a public
resource pool or dedicated resource pool as required. For details about the
parameters, see Creating a Training Job.

4. Click Submit to create the training job.

It takes a period of time to create a training job.

To view the real-time status of a training job, go to the training job list and
click the name of the training job. On the training job details page that is
displayed, view the basic information of the training job. For details, see
Viewing Training Job Details.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0023.html
https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0023.html
https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0104.html
https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0104.html
https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0011.html
https://support.huaweicloud.com/intl/en-us/develop-modelarts/develop-modelarts-0013.html

4.6 Troubleshooting Process

Symptom

A training job using a custom image failed.

Locating Method
1. Determine the image source.

– Check whether the base image of the custom image is from ModelArts.
Use a base image provided by ModelArts to create a custom image. For
details, see Using a Base Image to Create a Training Image.

– If the image is from a third party, check with the creator of the custom
image for how to use this image.

2. Determine the size of the custom image.
Do not use a custom image larger than 15 GB. The size should not exceed
half of the container engine space of the resource pool. Otherwise, the start
time of the training job is affected.
The container engine space of ModelArts public resource pool is 50 GB. By
default, the container engine space of the dedicated resource pool is also 50
GB. You can customize the container engine space when creating a dedicated
resource pool.

3. Determine the error type.
– If an error message is displayed indicating that a file could not be found,

see Error Message "No such file or directory" Displayed in Training
Job Logs.

– If an error message is displayed indicating that a package could not be
found, see Error Message "No module named .*" Displayed in Training
Job Logs.

– An error occurred in the Ascend startup script or initialization script.
Check whether the script is obtained from the official website and
whether the script is used strictly following the instructions provided in
official documents. For example, check whether the script name and path
are correct.

– The driver version is incompatible with the underlying driver.
Before upgrading the driver of a custom image, check whether the
upgraded version is supported by the underlying driver. Obtain the
supported driver versions.

– You are not allowed to access a file.
The possible cause is that the user of the custom image is different from
that of the job container. In this case, modify the Dockerfile.
RUN if id -u ma-user > /dev/null 2>&1 ; \
then echo 'The ModelArts user already exists.' ; \
else echo 'The ModelArts user does not exist.' && \
groupadd ma-group -g 1000 && \
useradd -d /home/ma-user -m -u 1000 -g 1000 -s /bin/bash ma-user ; fi && \
chmod 770 /home/ma-user && \

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0118.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_trouble_0014.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_trouble_0014.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_trouble_0015.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_trouble_0015.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0022.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0022.html

chmod 770 /root && \
usermod -a -G root ma-user

– For other issues, search for solutions in training failure cases.

Summary and Suggestions
Before using a custom image for training jobs, create the image by following the
custom image specifications. which also provides end-to-end examples for your
reference.

ModelArts
Image Management

4 Using a Custom Image to Train Models (Model
Training)

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0009.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/develop-modelarts-10079.html

5 Using a Custom Image to Create AI
applications for Inference Deployment

5.1 Custom Image Specifications for Creating AI
Applications

When building a custom image using a locally developed model, ensure that the
image complies with ModelArts specifications.

● No malicious code is allowed.
● A custom image cannot be larger than 50 GB.
● External APIs

Set the external service API for a custom image. The inference API must be
the same as the URL defined by apis in config.json. Then, the external service
API can be directly accessed when the image is started. The following is an
example of accessing an MNIST image. The image contains a model trained
using an MNIST dataset and can identify handwritten digits. listen_ip
indicates the container IP address. You can start a custom image to obtain the
container IP address from the container.
– Sample request

curl -X POST \ http://{Listening IP address}:8080/ \ -F images=@seven.jpg

Figure 5-1 Example of obtaining listen_ip

– Sample response
{"mnist_result": 7}

● (Optional) Health check API

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

If services must not be interrupted during a rolling upgrade, the health check
API must be configured in config.json for ModelArts. The health check API
returns the healthy state for a service when the service is running properly or
an error when the service becomes faulty.

NO TICE

The health check API must be configured for a hitless rolling upgrade.

The following shows a sample health check API:
– URI

GET /health

– Sample request: curl -X GET \ http://{Listening IP address}:8080/health
– Sample response

{"health": "true"}

– Status code

Table 5-1 Status code

Status Code Message Description

200 OK Request sent

● Log file output

Configure standard output so that logs can be properly displayed.
● Image boot file

To deploy a batch service, set the boot file of an image to /home/run.sh and
use CMD to set the default boot path. The following is a sample Dockerfile:
CMD ["sh", "/home/run.sh"]

● Image dependencies
To deploy a batch service, install dependency packages such as Python, JRE/
JDK, and ZIP in the image.

● (Optional) Hitless rolling upgrade
To ensure that services are not interrupted during a rolling upgrade, set HTTP
keep-alive to 200. For example, Gunicorn does not support keep-alive by
default. To ensure a hitless rolling upgrade, install Gevent and configure --
keep-alive 200 -k gevent in the image. The parameter settings vary
depending on the service framework. Set the parameters as required.

● (Optional) Gracefully exiting a container
To ensure that services are not interrupted during a rolling upgrade, the
system must capture SIGTERM signals in the container and wait for 60s
before gracefully exiting the container. If the duration is less than 60s before
the graceful exiting, services may be interrupted during the rolling upgrade.
To ensure uninterrupted service running, the system exits the container after
the system receives SIGTERM signals and processes all received requests. The
whole duration is not longer than 90s. The following shows example run.sh:
#!/bin/bash
gunicorn_pid=""

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

handle_sigterm() {
 echo "Received SIGTERM, send SIGTERM to $gunicorn_pid"
 if [$gunicorn_pid != ""]; then
 sleep 60
 kill -15 $gunicorn_pid # Transfer SIGTERM signals to the Gunicorn process.
 wait $gunicorn_pid # Wait until the Gunicorn process stops.
 fi
}

trap handle_sigterm TERM

5.2 Creating a Custom Image and Using It to Create an
AI Application

If you want to use an AI engine that is not supported by ModelArts, create a
custom image for the engine, import the image to ModelArts, and use the image
to create AI applications. This section describes how to use a custom image to
create an AI application and deploy the application as a real-time service.

The process is as follows:

1. Building an Image Locally: Create a custom image package locally. For
details, see Custom Image Specifications for Creating AI Applications.

2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the
custom image and upload the custom image to SWR.

3. Using the Custom Image to Create an AI Application: Import the image to
ModelArts AI application management.

4. Deploying the AI Application as a Real-Time Service: Deploy the model as
a real-time service.

Building an Image Locally
This section uses a Linux x86_x64 host as an example. You can purchase an ECS of
the same specifications or use an existing local host to create a custom image.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. When creating the ECS, select an Ubuntu 18.04 public image.

Figure 5-2 Creating an ECS using an x86 public image

1. After logging in to the host, install Docker. For details, see Docker official
documents. Alternatively, run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

2. Obtain the base image. Ubuntu 18.04 is used in this example.
docker pull ubuntu:18.04

3. Create the self-define-images folder, and edit Dockerfile and test_app.py in
the folder for the custom image. In the sample code, the application code
runs on the Flask framework.
The file structure is as follows:
self-define-images/
 --Dockerfile
 --test_app.py

– Dockerfile
From ubuntu:18.04
Configure the HUAWEI CLOUD source and install Python, Python3-PIP, and Flask.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
&& \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
&& \
 apt-get update && \
 apt-get install -y python3 python3-pip && \
 pip3 install --trusted-host https://repo.huaweicloud.com -i https://repo.huaweicloud.com/
repository/pypi/simple Flask

Copy the application code to the image.
COPY test_app.py /opt/test_app.py

Specify the boot command of the image.
CMD python3 /opt/test_app.py

– test_app.py
from flask import Flask, request
import json
app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

4. Switch to the self-define-images folder and run the following command to
create custom image test:v1:
docker build -t test:v1 .

5. Run docker images to view the custom image you have created.

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Verifying the Image Locally and Uploading It to SWR
1. Run the following command in the local environment to start the custom

image:
docker run -it -p 8080:8080 test:v1

Figure 5-3 Starting a custom image

2. Open another terminal and run the following commands to test the functions
of the three APIs of the custom image:
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet
curl -X GET 127.0.0.1:8080/goodbye

If information similar to the following is displayed, the function verification is
successful.

Figure 5-4 Testing API functions

3. Upload the custom image to SWR. For details, see How Can I Upload Images
to SWR?

4. View the uploaded image on the My Images > Private Images page of the
SWR console.

Using the Custom Image to Create an AI Application

Import a meta model. For details, see Creating and Importing a Model Image.
Key parameters are as follows:
● Meta Model Source: Select Container image.

– Container Image Path: Select the created private image.

Figure 5-5 Created private image

– Container API: Protocol and port number for starting a model. Ensure
that the protocol and port number are the same as those provided in the
custom image.

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0009.html

– Image Replication: indicates whether to copy the model image in the
container image to ModelArts. This parameter is optional.

– Health Check: checks health status of a model. This parameter is
optional. This parameter is configurable only when the health check API
is configured in the custom image. Otherwise, creating the AI application
will fail.

● APIs: APIs of a custom image. This parameter is optional. The model APIs
must comply with ModelArts specifications. For details, see Specifications for
Editing a Model Configuration File.
The configuration file is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/greet",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/goodbye",
 "method": "get",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 }
]

Deploying the AI Application as a Real-Time Service
1. Deploy the AI application as a real-time service. For details, see Deploying as

a Real-Time Service.
2. View the details about the real-time service.
3. Access the real-time service on the Prediction tab page.

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0056.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0056.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0018.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0018.html

Figure 5-6 Accessing a real-time service

ModelArts
Image Management

5 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

6 FAQs

6.1 How Can I Log In to SWR and Upload Images to It?
This section describes how to log in to SWR and upload images to it.

Step 1 Log In to SWR
1. Log in to the SWR console and select the target region.

Figure 6-1 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. deep-learning is used as an
example. Replace it in subsequent commands with the actual organization
name.

ModelArts
Image Management 6 FAQs

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

Figure 6-2 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 6-3 Login Command

4. Log in to the ECS as user root and enter the login command.

Figure 6-4 Login command executed on the ECS

Step 2 Upload Images to SWR

This section describes how to upload an image to SWR.

1. Log in to SWR and tag the image to be uploaded. Replace the organization
name deep-learning in the following command with the actual organization
name obtained in step 1.
sudo docker tag tf-1.13.2:latest swr.xxx.com/deep-learning/tf-1.13.2:latest

2. Run the following command to upload the image:
sudo docker push swr.xxx.com/deep-learning/tf-1.13.2:latest

ModelArts
Image Management 6 FAQs

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

Figure 6-5 Uploading an image

3. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Figure 6-6 Uploaded custom image

swr.xxx.com/deep-learning/tf-1.13.2:latest is the SWR URL of the custom
image.

6.2 How Do I Configure Environment Variables for an
Image?

In a Dockerfile, use the ENV instruction to configure environment variables. For
details, see Dockerfile reference.

6.3 How Do I Use Docker to Start an Image Saved
Using a Notebook Instance?

An image saved using a notebook instance contains the Entrypoint parameter, as
shown in Entrypoint. The executable file or command specified in the Entrypoint
parameter overwrites the default boot command of the image. The command
input in the Entrypoint parameter is not preset in the image. When you run
docker run in the local environment to start the image, an error message is
displayed, indicating that the container creation task fails because the boot file or
directory is not found, as shown in Figure 6-8.

To avoid this error, configure the --entrypoint parameter to overwrite the
program specified in Entrypoint. Use the boot file or command specified by the --
entrypoint parameter to start the image. Example:

ModelArts
Image Management 6 FAQs

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

https://docs.docker.com/engine/reference/builder/#env

docker run -it -d --entrypoint /bin/bash image:tag

Figure 6-7 Entrypoint

Figure 6-8 Error reported when an image is being started

6.4 How Do I Configure a Conda Source in a Notebook
Development Environment?

You can install the development dependencies in Notebook as you need. Package
management tools pip and Conda can be used to install regular dependencies.
The pip source has been configured and can be used for installation, while the
Conda source requires further configuration.

This section describes how to configure the Conda source on a notebook instance.

Configuring the Conda Source

The Conda software has been preset in images.

Common Conda Commands

For details about all Conda commands, see Conda official documents. The
following table lists only common commands.

Table 6-1 Common Conda commands

Descripti
on

Command

Obtain
online
help.

conda --help
conda update --help # Obtain help for a command, for example, update.

ModelArts
Image Management 6 FAQs

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

https://conda.io/projects/conda/en/latest/commands.html

Descripti
on

Command

View the
Conda
version.

conda -V

Update
Conda.

conda update conda # Update Conda.
conda update anaconda # Update Anaconda.

Manage
environm
ents.

conda env list # Show all virtual environments.
conda info -e # Show all virtual environments.
conda create -n myenv python=3.7 # Create an environment named myenv with Python
version 3.7.
conda activate myenv # Activate the myenv environment.
conda deactivate # Disable the current environment.
conda remove -n myenv --all # Delete the myenv environment.
conda create -n newname --clone oldname # Clone the old environment to the new
environment.

Manage
packages.

conda list # Check the packages that have been installed in the current environment.
conda list -n myenv # Specify the packages installed in the myenv environment.
conda search numpy # Obtain all information of the numpy package.
conda search numpy=1.12.0 --info # View the information of NumPy 1.12.0.
conda install numpy pandas # Concurrently install the NumPy and Pandas packages.
conda install numpy=1.12.0 # Install NumPy of a specified version.
The install, update, and remove commands use -n to specify an environment, and
the install and update commands use -c to specify a source address.
conda install -n myenv numpy # Install the numpy package in the myenv environment.
conda install -c https://conda.anaconda.org/anaconda numpy # Install NumPy using
https://conda.anaconda.org/anaconda.
conda update numpy pandas # Concurrently update the NumPy and Pandas packages.
conda remove numpy pandas # Concurrently uninstall the NumPy and Pandas
packages.
conda update –-all # Update all packages in the current environment.

Clear
Conda.

conda clean -p # Delete useless packages.
conda clean -t # Delete compressed packages.
conda clean -y --all # Delete all installation packages and clear caches.

Saving as an Image

After installing the external libraries, save the environment using the image saving
function provided by ModelArts notebook of the new version. You can save a
running notebook instance as a custom image with one click for future use. After
the dependency packages are installed on a notebook instance, it is a good
practice to save the instance as an image to prevent the dependency packages
from being lost. For details, see Saving a Notebook Environment Image.

6.5 What Are Supported Software Versions for a
Custom Image?

If your custom image uses software libraries such as NCCL, CUDA, and OFED,
ensure that the software libraries meet the following version requirements:

● NCCL 2.7.8 or later
● OFED MLNX_OFED_LINUX-5.4-3.1.0.0 or later

ModelArts
Image Management 6 FAQs

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

● The CUDA version needs to be adapted to the GPU driver version of the
dedicated resource pool. To obtain the GPU driver version, go to the dedicated
resource pool details page.

ModelArts
Image Management 6 FAQs

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

7 Modification History

Released Date Description

2023-10-01 Added the following content:
● Added Starting Training with a

Preset Image.

2023-09-07 Added the following content:
● Added What Are Supported

Software Versions for a Custom
Image?.

Modified the following content:
● Changed the manual name from

"Using Custom Images" to "Image
Management".

● Adjusted content in "Preset
Images". Combined the
development environment and
training and inference base images
into Using a Preset Image.

ModelArts
Image Management 7 Modification History

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

	Contents
	1 Image Management
	2 Using a Preset Image
	2.1 Images Preset in Notebook
	2.1.1 Notebook Base Images
	2.1.2 Notebook Base Image List
	2.1.3 PyTorch (x86)-powered Notebook Base Image
	2.1.4 Tensorflow (x86)-powered Notebook Base Image
	2.1.5 MindSpore (x86)-powered Notebook Base Image
	2.1.6 Custom Dedicated Image (x86)-powered Notebook Base Image

	2.2 Training Base Image
	2.2.1 Available Training Base Images
	2.2.2 Training Base Image (PyTorch)
	2.2.3 Training Base Image (TensorFlow)
	2.2.4 Training Base Image (Horovod)
	2.2.5 Training Base Image (MPI)
	2.2.6 Starting Training with a Preset Image
	2.2.6.1 PyTorch
	2.2.6.2 TensorFlow
	2.2.6.3 Horovod/MPI/MindSpore-GPU

	2.3 Inference Base Images
	2.3.1 Available Inference Base Images
	2.3.2 TensorFlow (CPU/GPU)-powered Inference Base Images
	2.3.3 PyTorch (CPU/GPU)-powered Inference Base Images
	2.3.4 MindSpore (CPU/GPU)-powered Inference Base Images

	3 Using Custom Images in Notebook Instances
	3.1 Registering an Image in ModelArts
	3.2 Creating a Custom Image
	3.3 Saving a Notebook Instance as a Custom Image
	3.3.1 Saving a Notebook Environment Image
	3.3.2 Using a Custom Image to Create a Notebook Instance

	3.4 Creating and Using a Custom Image in Notebook
	3.4.1 Application Scenarios and Process
	3.4.2 Step 1 Creating a Custom Image
	3.4.3 Step 2 Registering a New Image
	3.4.4 Step 3 Using a New Image to Create a Development Environment

	3.5 Creating a Custom Image on an ECS and Using It in Notebook
	3.5.1 Application Scenarios and Process
	3.5.2 Step 1 Preparing a Docker Server and Configuring an Environment
	3.5.3 Step 2 Creating a Custom Image
	3.5.4 Step 3 Registering a New Image
	3.5.5 Step 5 Creating and Starting a Development Environment

	4 Using a Custom Image to Train Models (Model Training)
	4.1 Overview
	4.2 Example: Creating a Custom Image for Training
	4.2.1 Example: Creating a Custom Image for Training (PyTorch + CPU/GPU)
	4.2.2 Example: Creating a Custom Image for Training (MPI + CPU/GPU)
	4.2.3 Example: Creating a Custom Image for Training (Horovod-PyTorch and GPUs)
	4.2.4 Example: Creating a Custom Image for Training (MindSpore and GPUs)
	4.2.5 Example: Creating a Custom Image for Training (TensorFlow and GPUs)

	4.3 Preparing a Training Image
	4.3.1 Specifications for Custom Images for Training Jobs
	4.3.2 Migrating an Image to ModelArts Training
	4.3.3 Using a Base Image to Create a Training Image
	4.3.4 Installing MLNX_OFED in a Container Image

	4.4 Creating an Algorithm Using a Custom Image
	4.5 Using a Custom Image to Create a CPU- or GPU-based Training Job
	4.6 Troubleshooting Process

	5 Using a Custom Image to Create AI applications for Inference Deployment
	5.1 Custom Image Specifications for Creating AI Applications
	5.2 Creating a Custom Image and Using It to Create an AI Application

	6 FAQs
	6.1 How Can I Log In to SWR and Upload Images to It?
	6.2 How Do I Configure Environment Variables for an Image?
	6.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?
	6.4 How Do I Configure a Conda Source in a Notebook Development Environment?
	6.5 What Are Supported Software Versions for a Custom Image?

	7 Modification History

